2011-04-23 90 views
7

我知道這已被問過,但我沒有在任何帖子中找到答案。有人可以建議我一個枚舉圖中所有哈密頓路徑的算法嗎?枚舉*所有*哈密爾頓路徑

有點背景:我正在研究一個問題,我必須列舉每個哈密爾頓路徑,做一些分析並返回結果。爲此,我需要列舉所有可能的哈密爾頓路徑。

謝謝。

+0

你嘗試普通的搜索? BFS/DFS?你的圖表有多大? – slezica 2011-04-23 18:47:23

+0

聖地亞哥,謝謝你的回覆。我的圖很小(6-7節點)。我曾考慮過BFS和DFS,但我認爲BFS/DFS用於搜索特定的密鑰,而不是列舉所有可能的路徑。我如何讓BFS/DFS生成*所有*可能的週期.. – 2011-04-23 20:11:14

+0

定期BFS/DFS找到匹配的第一個鍵後停止。你只需要改變它,讓它遍歷整個圖(如果可能的話),並將其記錄爲解決方案。 – slezica 2011-04-23 23:28:39

回答

3

按照建議使用BFS/DFS,但不要停在第一個解決方案。 BFS/DFS的主要用途(在這種情況下)將是找到所有的解決方案,你需要給它一個條件停止在第一個。

+0

謝謝。你能否詳細說明你的意思是「解決方案」。據我所知,在圖上運行DFS將簡單地給出訪問節點序列(例如,對於具有頂點A,B,C,D的圖的A→B→C→D)。但它永遠不會「探索」所有可能的路徑。你能否詳細說明一下? – 2011-04-23 23:56:31

+1

DFS和BFS都會爲您提供從特定節點開始的所有可能路徑。從這些哈密爾頓路徑中,那些長度與圖形大小完全相同的節點,每個節點只存在一次。所以如果你有一個有5個節點的圖,並且有一個p1-> p2-> p3-> p4-> p5的路徑,它就是一個哈密爾頓路徑。另外請注意,您將不得不從每個節點開始搜索。 – SinistraD 2011-04-24 00:46:39

+0

謝謝SinistraD,這非常有幫助! – 2011-04-24 20:52:31

3

我的Java代碼:(絕對基於遞歸方法)

算法:

+開始在1點連接到另一點它可以看到(以形成路徑)。

+刪除路徑並遞歸查找最新點的新路徑,直到連接圖的所有點。

+除去路徑和回溯到初始圖表如果斜面形成從最新點

public class HamiltonPath { 
public static void main(String[] args){ 
    HamiltonPath obj = new HamiltonPath(); 

    int[][]x = {{0,1,0,1,0}, //Represent the graphs in the adjacent matrix forms 
       {1,0,0,0,1}, 
       {0,0,0,1,0}, 
       {1,0,1,0,1}, 
       {0,1,0,1,0}}; 

    int[][]y = {{0,1,0,0,0,1}, 
       {1,0,1,0,0,1}, 
       {0,1,0,1,1,0}, 
       {0,0,1,0,0,0}, 
       {0,0,1,0,0,1}, 
       {1,1,0,0,1,0}}; 

    int[][]z = {{0,1,1,0,0,1}, 
       {1,0,1,0,0,0}, 
       {1,1,0,1,0,1}, 
       {0,0,1,0,1,0}, 
       {0,0,0,1,0,1}, 
       {1,0,1,0,1,0}}; 

    obj.allHamiltonPath(y); //list all Hamiltonian paths of graph 
    //obj.HamiltonPath(z,1); //list all Hamiltonian paths start at point 1 


} 

static int len; 
static int[]path; 
static int count = 0;  

public void allHamiltonPath(int[][]x){ //List all possible Hamilton path in the graph 
    len = x.length; 
    path = new int[len]; 
    int i; 
    for(i = 0;i<len;i++){ //Go through column(of matrix) 
     path[0]=i+1; 
     findHamiltonpath(x,0,i,0); 
    } 
} 

public void HamiltonPath(int[][]x, int start){ //List all possible Hamilton path with fixed starting point 
    len = x.length; 
    path = new int[len]; 
    int i; 
    for(i = start-1;i<start;i++){ //Go through row(with given column) 
     path[0]=i+1; 
     findHamiltonpath(x,0,i,0); 
    } 
} 

private void findHamiltonpath(int[][]M,int x,int y,int l){ 

    int i; 
     for(i=x;i<len;i++){   //Go through row 

      if(M[i][y]!=0){  //2 point connect 

       if(detect(path,i+1))// if detect a point that already in the path => duplicate 
        continue; 

       l++;   //Increase path length due to 1 new point is connected 
       path[l]=i+1; //correspond to the array that start at 0, graph that start at point 1 
       if(l==len-1){//Except initial point already count =>success connect all point 
        count++; 
        if (count ==1) 
       System.out.println("Hamilton path of graph: "); 
        display(path); 
        l--; 
        continue; 
       } 

       M[i][y]=M[y][i]=0; //remove the path that has been get and 
       findHamiltonpath(M,0,i,l); //recursively start to find new path at new end point 
       l--;    // reduce path length due to the failure to find new path   
       M[i][y] = M[y][i]=1; //and tranform back to the inital form of adjacent matrix(graph) 
      } 
    }path[l+1]=0; //disconnect two point correspond the failure to find the.. 
}      //possible hamilton path at new point(ignore newest point try another one)   

public void display(int[]x){ 

    System.out.print(count+" : "); 
    for(int i:x){ 
     System.out.print(i+" "); 
    } 
     System.out.println(); 
} 

private boolean detect(int[]x,int target){ //Detect duplicate point in Halmilton path 
    boolean t=false;       
    for(int i:x){ 
     if(i==target){ 
      t = true; 
      break; 
     } 
    } 
    return t; 
} 

}

0

解決方案在Python3:

def hamiltonians(G, vis = []): 
    if not vis: 
     for n in G: 
      for p in hamiltonians(G, [n]): 
       yield p 
    else: 
     dests = set(G[vis[-1]]) - set(vis) 
     if not dests and len(vis) == len(G): 
      yield vis 
     for n in dests: 
      for p in hamiltonians(G, vis + [n]): 
       yield p 
G = {'a' : 'bc', 'b' : 'ad', 'c' : 'b', 'd' : 'ac'} 
print(list(hamiltonians(G)))