我有很多與計算rollng_mean當缺失值:使用遺漏值pandas.rolling_mean
import datetime as dt
import pandas as pd
import pandas.io.data as web
stocklist = ['MSFT', 'BELG.BR']
# read historical prices for last 11 years
def get_px(stock, start):
return web.get_data_yahoo(stock, start)['Adj Close']
today = dt.date.today()
start = str(dt.date(today.year-11, today.month, today.day))
px = pd.DataFrame({n: get_px(n, start) for n in stocklist})
px.ffill()
sma200 = pd.rolling_mean(px, 200)
得到以下結果:
In [14]: px
Out[14]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2836 entries, 2002-01-14 00:00:00 to 2013-01-11 00:00:00
Data columns:
BELG.BR 2270 non-null values
MSFT 2769 non-null values
dtypes: float64(2)
In [15]: sma200
Out[15]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2836 entries, 2002-01-14 00:00:00 to 2013-01-11 00:00:00
Data columns:
BELG.BR 689 non-null values
MSFT 400 non-null values
dtypes: float64(2)
任何想法,爲什麼大多數sma200 rolling_mean值的失蹤,如何獲得完整列表?
好,謝謝。任何想法爲什麼填充沒有解決這個問題? – ronnydw
你需要在原地使用它,在調用'ffill'時通過'inplace = True'。 – jozzas