0
試圖讓非常簡單的('玩具')2層神經網絡建立模型,作爲一個學習的例子,以確保數學正確流動。Tensorflow:試圖讓玩具神經網絡'學習'
該模型應該知道第一個和最後一個特徵的'1'等於'1'輸出。
features = []
features.append([[0, 0, 0, 0, 0], [0]])
features.append([[0, 0, 0, 0, 1], [0]])
features.append([[0, 0, 0, 1, 1], [0]])
features.append([[0, 0, 1, 1, 1], [0]])
features.append([[0, 1, 1, 1, 1], [0]])
features.append([[1, 1, 1, 1, 0], [0]])
features.append([[1, 1, 1, 0, 0], [0]])
features.append([[1, 1, 0, 0, 0], [0]])
features.append([[1, 0, 0, 0, 0], [0]])
features.append([[1, 0, 0, 1, 0], [0]])
features.append([[1, 0, 1, 1, 0], [0]])
features.append([[1, 1, 0, 1, 0], [0]])
features.append([[0, 1, 0, 1, 1], [0]])
features.append([[0, 0, 1, 0, 1], [0]])
# output of [1] of positions [0,4]==1
features.append([[1, 0, 0, 0, 1], [1]])
features.append([[1, 1, 0, 0, 1], [1]])
features.append([[1, 1, 1, 0, 1], [1]])
features.append([[1, 1, 1, 1, 1], [1]])
features.append([[1, 0, 0, 1, 1], [1]])
features.append([[1, 0, 1, 1, 1], [1]])
features.append([[1, 1, 0, 1, 1], [1]])
features.append([[1, 0, 1, 0, 1], [1]])
但是我不能讓任何錯誤/成本露面......
Epoch 3 completed out of 10 cost: 0.0
Epoch 5 completed out of 10 cost: 0.0
Epoch 7 completed out of 10 cost: 0.0
Epoch 9 completed out of 10 cost: 0.0
Accuracy: 1.0
預先感謝有一個快速瀏覽一下:here is the notebook ...