我想使用我自己的binary_crossentropy而不是使用Keras庫自帶的函數。這裏是我的自定義函數:使用theano函數keras中的自定義丟失函數
import theano
from keras import backend as K
def elementwise_multiply(a, b): # a and b are tensors
c = a * b
return theano.function([a, b], c)
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = elementwise_multiply(first_log, y_true)
second_log = K.log(1 - y_pred)
second_log = elementwise_multiply(second_log, (1 - y_true))
result = second_log + first_log
return K.mean(result, axis=-1)
note: This is for practice. I'm aware of T.nnet.binary_crossentropy(y_pred, y_true)
但是,當我編譯模型:
sgd = SGD(lr=0.001)
model.compile(loss = custom_objective, optimizer = sgd)
我得到這個錯誤:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) in() 36 37 sgd = SGD(lr=0.001) ---> 38 model.compile(loss = custom_objective, optimizer = sgd) 39 # ==============================================
C:\Program Files (x86)\Anaconda3\lib\site-packages\keras\models.py in compile(self, optimizer, loss, class_mode) 418 else: 419 mask = None --> 420 train_loss = weighted_loss(self.y, self.y_train, self.weights, mask) 421 test_loss = weighted_loss(self.y, self.y_test, self.weights, mask) 422
C:\Program Files (x86)\Anaconda3\lib\site-packages\keras\models.py in weighted(y_true, y_pred, weights, mask) 80 ''' 81 # score_array has ndim >= 2 ---> 82 score_array = fn(y_true, y_pred) 83 if mask is not None: 84 # mask should have the same shape as score_array
in custom_objective(y_true, y_pred) 11 second_log = K.log(1 - K.clip(y_true, K.epsilon(), np.inf)) 12 second_log = elementwise_multiply(second_log, (1-y_true)) ---> 13 result = second_log + first_log 14 #result = np.multiply(result, y_pred) 15 return K.mean(result, axis=-1)
TypeError: unsupported operand type(s) for +: 'Function' and 'Function'
,當我和內聯函數代替elementwise_multiply :
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = first_log * y_true
second_log = K.log(1 - y_pred)
second_log = second_log * (1-y_true)
result = second_log + first_log
return K.mean(result, axis=-1)
模型編譯,但損失值是楠:
Epoch 1/1 945/945 [==============================] - 62s - loss: nan - acc: 0.0011 - val_loss: nan - val_acc: 0.0000e+00
可能有人能幫我解決這個請?
謝謝
錯誤消息以指示'結果= second_log + first_log'作爲錯誤,因爲這些是兩種功能。你檢查過'K.log'的輸出嗎? –
@ M.T是的,K.log的輸出是「Elemwise {log,no_inplace} .0」。我剛剛更新了這個問題(增加了模型編譯但損失爲nan的另一個場景) – Nejla