我想我寫的是「沒有問題太容易」的精神,我只是一個普通的Stata用戶社會科學家,第一次接近R,面對着無盡的夜晚......請憐憫!在列表中重新編碼變量
我正在使用來自20個國家的比較數據集(約20,000個觀察結果,各國之間相當均衡)。 我必須執行一組相當計算密集的MCMC模擬,因此我決定將df分成一個包含20個(國家特定)df的列表,並繼續執行lapply()
。 (我讀過R上的for
循環更有效率,對吧?)
我最直接的問題是我無法預處理列表中包含的各種df中的元素。特別是,我必須重新編碼一組15個變量,這些變量是從0到10的整數,其中包括缺失情況的SPSS典型值:77 88, 89, 99, 999
。我想將這些值重新編碼爲NA
,然後做一些小的附加轉換:以0爲中心,定義兩個df對象T
和TT
,其中包含兩組不同的變量,以便稍後在模擬中使用。這個任務必須在構成「主」列表「ees2009split」的20個不同的國家特定列表元素上重複。
ees2009split <- vector("list", 20)
ees2009split <- split(ees2009, ees2009$t102) # t102 is the country identifier
names(ees2009split) <- country.names[1:2] # rename list objects with country names
因此,這裏是我的名單(抱歉,我不能提供一個可重複的例子):
> str(ees2009split)
List of 20
$ Austria :'data.frame': 1000 obs. of 17 variables:
..$ t102 : int [1:1000] 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 ...
..$ q46 : int [1:1000] 77 2 5 5 5 77 5 5 5 77 ...
..$ q47_p1 : int [1:1000] 77 3 5 4 77 77 5 1 89 77 ...
..$ q47_p2 : int [1:1000] 77 8 7 6 77 77 5 6 5 77 ...
..$ q47_p3 : int [1:1000] 77 10 10 9 77 77 5 7 7 77 ...
..$ q47_p4 : int [1:1000] 77 10 9 8 77 77 5 7 4 77 ...
..$ q47_p5 : int [1:1000] 77 2 5 3 77 77 5 1 3 77 ...
..$ q47_p6 : int [1:1000] 77 4 89 5 77 77 89 2 89 77 ...
..$ q47_p7 : int [1:1000] 77 3 89 6 77 77 89 3 5 77 ...
..$ q47_p8 : int [1:1000] 77 1 0 0 77 77 5 0 89 77 ...
..$ q47_p9 : int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p10: int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p11: int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p12: int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p13: int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p14: int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p15: int [1:1000] 99 99 99 99 99 99 99 99 99 99 ...
$ Belgium :'data.frame': 1002 obs. of 17 variables:
..$ t102 : int [1:1002] 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 ...
..$ q46 : int [1:1002] 5 0 77 88 77 88 5 2 77 5 ...
..$ q47_p1 : int [1:1002] 88 5 77 77 6 77 5 77 5 77 ...
..$ q47_p2 : int [1:1002] 88 10 77 77 8 77 89 77 10 77 ...
..$ q47_p3 : int [1:1002] 88 7 77 77 5 77 3 77 0 77 ...
..$ q47_p4 : int [1:1002] 88 10 77 77 10 77 10 77 10 77 ...
..$ q47_p5 : int [1:1002] 88 0 77 77 4 77 4 77 5 77 ...
..$ q47_p6 : int [1:1002] 99 99 77 99 99 77 99 77 99 99 ...
..$ q47_p7 : int [1:1002] 99 99 77 99 99 77 99 77 99 99 ...
..$ q47_p8 : int [1:1002] 99 99 88 99 99 77 99 77 99 99 ...
..$ q47_p9 : int [1:1002] 99 99 77 99 99 77 99 77 99 99 ...
..$ q47_p10: int [1:1002] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p11: int [1:1002] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p12: int [1:1002] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p13: int [1:1002] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p14: int [1:1002] 99 99 99 99 99 99 99 99 99 99 ...
..$ q47_p15: int [1:1002] 99 99 99 99 99 99 99 99 99 99 ...
等等,直到全國20
我定義爲所謂的兩個功能與lapply()
,功能rename()
和recode()
:
rename <- function(x) {
# renaming
names(x) <- gsub("q46", "lr.self", names(x))
names(x) <- gsub("q47_p", "lr.p", names(x))
return(x)
}
到目前爲止好:
> processed.dat <- lapply(ees2009split, renaming)
> str(processed.dat)
List of 20
$ Austria :'data.frame': 1000 obs. of 17 variables:
..$ t102 : int [1:1000] 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 ...
..$ lr.self: int [1:1000] 77 2 5 5 5 77 5 5 5 77 ...
..$ lr.p1 : int [1:1000] 77 3 5 4 77 77 5 1 89 77 ...
# I omit the rest...
隨着我有困難時期,而不是重新編碼功能:
recoding <- function(x){
# recode missing values
x$lr.self[lr.self %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p1[lr.p1 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p2[lr.p2 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p3[lr.p3 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p4[lr.p4 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p5[lr.p5 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p6[lr.p6 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p7[lr.p7 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p8[lr.p8 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p9[lr.p9 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p10[lr.p10 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p11[lr.p11 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p12[lr.p12 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p13[lr.p13 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p14[lr.p14 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$lr.p15[lr.p15 %in% c(77, 88, 89, 98, 99, 999)] <- NA
x$T <- cbind(lr.self, lr.p1, lr.p2, lr.p3, lr.p4, lr.p5, lr.p6, lr.p7, lr.p8, lr.p9, lr.p10, lr.p11, lr.p12, lr.p13, lr.p14, lr.p15)
T <- T - 5 # centering on 0
lrself.resc <- T[,1] # rescaled lr.self
TT <- T[,-1] # whole matrix rescaled
N <- nrow(TT)
q <- ncol(TT)
z <- TT
x$dat.list <- list(lr.self=lr.self, lr.p1=lr.p1, lr.p2=lr.p2, lr.p3=lr.p3, lr.p4=lr.p4, lr.p5=lr.p5, lr.p6=lr.p6, lr.p7=lr.p7, lr.p8=lr.p8, lr.p9=lr.p9, lr.p10=lr.p10, lr.p11=lr.p11, lr.p12=lr.p12, lr.p13=lr.p13, lr.p14=lr.p14, lr.p15=lr.p15, T=T, TT=TT, lrself.resc, N=N, q=q, z=z)
return(x$dat.list)
}
這是輸出:
> processed.dat <- lapply(ees2009split, recoding)
Error in match(x, table, nomatch = 0L) : object 'lr.self' not found
Called from: FUN(X[[1L]], ...)
Browse[1]>
1)我應該如何重新編寫變量在與lapply()
列表中包含的數據框內?更廣泛地說,我如何在函數內的國家DF內插入對象? 2)從更一般的立場來看,這種處理方式是正確的嗎?分割,定義特定於任務的功能,用lapply()
調用它們,最後重新組合?
謝謝您的任何建議或意見。 Andrea
如果我處在你的位置,我會先轉換歐洲選舉研究數據成整齊的格式,然後再處理來港,然後正常化。除非你使用4GB內存的筆記本電腦運行它,或者有一些理由超出了計算限制,否則我認爲你不需要分割數據。 –
告訴你用來導入數據的功能,NA是如何編碼的,它會爲你處理。 – Roland
關於'recode',而不是重複'val < - c(77,88,89,98,99,999); lapply(processed.dat,function(x){x [] <-lapply(x,function(.x){.x [.x%in%val] < - NA; .x}); x})' – akrun