我有噪音data(峯值週期爲1.8s,每個週期爲2048個bin),我想計算頻率並刪除50Hz。我很確定,我期待的頻率是50Hz,因爲我通過使用originlab
找到它。FFT:在信號中找到並切割50Hz的噪音
當我嘗試在python中做同樣的操作時,平均峯值是〜47Hz。我正在看教程和例子,但結果仍然是一樣的。
import numpy as np
from scipy.fftpack import fft
from scipy.fftpack import fftfreq
import matplotlib.pyplot as plt
data = np.loadtxt('3.dat', comments="#")
t = data[:, 0]
y = data[:, 2]
len_data = len(data)
bins = 2048
plt.figure(figsize=(7, 9))
plt.subplot(211)
plt.plot(t, y, 'b-')
plt.xlabel("time[sec]")
plt.ylabel("original signal")
plt.subplot(212)
F = fft(y)
freq = fftfreq(len(t), (t[1] - t[0]))
ipos = np.where(freq > 0)
freqs = freq[ipos]
mags = np.abs(F[ipos])
plt.plot(freqs, mags, 'b-')
plt.xlabel("freq")
plt.ylabel("POWER")
plt.savefig('stoc.png')
plt.show()
有人可以幫助我如何解決?
我必須恢復關於隔絕噪音的問題。當我減去頻率時,信號幅度顯着下降。它是否正確?
data = np.loadtxt('3.dat', comments="#")
t = data[:, 0]
phase = data[:, 1]
y = data[:, 2]
pulse_no = data[:, 3]
len_data = len(data)
bins = 2048
ti = np.linspace(t[0], t[-1], len_data)
yi = np.interp(ti, t, y)
t, y = ti, yi
plt.figure(figsize=(10, 10))
plt.subplot(511)
plt.plot(t, y, 'b-')
plt.xlabel("time[sec]")
plt.ylabel("original signal")
plt.subplot(512)
F = fft(y)
N = len(t)
w = fftfreq(N, (t[1] - t[0]))
ipos = np.where(w > 0)
freq = w[ipos]
mags = abs(F[ipos])
plt.plot(freq, mags)
ip = np.where(F > 0)[0]
Fs = np.copy(F)
yf = ifft(Fs)
ip = np.where(F > 0)[0]
Ff = np.copy(F)
Ff[ip > ip[[(181)]]] = 0
Ff[ip < ip[[(175)]]] = 0
magsf = abs(Ff[ipos])
plt.plot(freq, magsf, 'r-')
plt.subplot(513)
Fr = mags - magsf
plt.plot(freq, Fr)
plt.subplot(514)
yf = ifft(Ff)
yr = ifft(Fr)
plt.plot(t, yf)
plt.subplot(515)
flux = y - np.real(yf)
plt.plot(t, flux)
plt.plot(t, y)
plt.show()
您是否知道FFT正在生成的頻率分檔的粒度? –