1
我運行一個非平行隨機森林的對象,像這樣沒有問題:並行隨機森林失蹤MSE和R平方
> rf <- randomForest(t2[,-c(1,2,7,12)],t2[,2],
+ ,sampsize=c(10000),do.trace=F,importance=TRUE,ntree=1,,forest=TRUE)
Warning message:
In randomForest.default(t2[, -c(1, 2, 7, 12)], t2[, 2], , sampsize = c(10000), :
The response has five or fewer unique values. Are you sure you want to do regression?
> rf
Call:
randomForest(x = t2[, -c(1, 2, 7, 12)], y = t2[, 2], ntree = 1, sampsize = c(10000), importance = TRUE, do.trace = F, forest = TRUE)
Type of random forest: regression
Number of trees: 1
No. of variables tried at each split: 2
Mean of squared residuals: 0.07444926
% Var explained: -19.36
> rf$rsq
[1] -0.1936248
現在我使用並行的東西運行相同的代碼,並沒有得到MSE或%無功解釋:
> library("foreach")
> library("doSNOW")
> registerDoSNOW(makeCluster(2, type="SOCK"))
>
>
>
> rf <- foreach(ntree = rep(1, 2), .combine = combine, .packages = "randomForest") %dopar%
+ randomForest(t2[,-c(1,2,7,12)],t2[,2],
+ ,sampsize=c(10000),do.trace=F,importance=TRUE,ntree=1,,forest=TRUE)
> rf
Call:
randomForest(x = t2[, -c(1, 2, 7, 12)], y = t2[, 2], ntree = 1, sampsize = c(10000), importance = TRUE, do.trace = F, forest = TRUE)
Type of random forest: regression
Number of trees: 2
No. of variables tried at each split: 2
> rf$rsq
NULL
任何想法我做錯了什麼?謝謝。
非常感謝。 – screechOwl