1
當我使用交叉驗證技術和我的數據時,它給了我兩種類型的預測。 CVpredict和預測。那兩者之間有什麼區別?我想cvpredict是交叉驗證預測,但其他是什麼?R - 交叉驗證中的兩種預測
下面是我的一些代碼:
crossvalpredict <- cv.lm(data = total,form.lm = formula(verim~X4+X4.1),m=5)
這是結果:
fold 1
Observations in test set: 5
3 11 15 22 23
Predicted 28.02 32.21 26.53 25.1 21.28
cvpred 20.23 40.69 26.57 34.1 26.06
verim 30.00 31.00 28.00 24.0 20.00
CV residual 9.77 -9.69 1.43 -10.1 -6.06
Sum of squares = 330 Mean square = 66 n = 5
fold 2
Observations in test set: 5
2 7 21 24 25
Predicted 28.4 32.0 26.2 19.95 25.9
cvpred 52.0 81.8 36.3 14.28 90.1
verim 30.0 33.0 24.0 21.00 24.0
CV residual -22.0 -48.8 -12.3 6.72 -66.1
Sum of squares = 7428 Mean square = 1486 n = 5
fold 3
Observations in test set: 5
6 14 18 19 20
Predicted 34.48 36.93 19.0 27.79 25.13
cvpred 37.66 44.54 16.7 21.15 7.91
verim 33.00 35.00 18.0 31.00 26.00
CV residual -4.66 -9.54 1.3 9.85 18.09
Sum of squares = 539 Mean square = 108 n = 5
fold 4
Observations in test set: 5
1 4 5 9 13
Predicted 31.91 29.07 32.5 32.7685 28.9
cvpred 30.05 28.44 54.9 32.0465 11.4
verim 32.00 27.00 31.0 32.0000 30.0
CV residual 1.95 -1.44 -23.9 -0.0465 18.6
Sum of squares = 924 Mean square = 185 n = 5
fold 5
Observations in test set: 5
8 10 12 16 17
Predicted 27.8 30.28 26.0 27.856 35.14
cvpred 50.3 33.92 45.8 31.347 29.43
verim 28.0 30.00 24.0 31.000 38.00
CV residual -22.3 -3.92 -21.8 -0.347 8.57
Sum of squares = 1065 Mean square = 213 n = 5
Overall (Sum over all 5 folds)
ms
411
是的,它給出了相同的觀察。 'lm'的結果比cross val好得多。感謝你的回答。讚賞。 – Ege