0
如果我在一個循環中使用tf.gfile.FastGFile(file, 'rb').read()
兩次,每次時間,從兩個不同的文件夾中讀出的圖像,這樣tf.gfile.FastGFile(文件, 'RB')。read()讀取圖像兩次
image_data = tf.gfile.FastGFile(file, 'rb').read()
....
image_dataA= tf.gfile.FastGFile(file, 'rb').read()
然後python,在第二個循環開始從其中的第一個文件夾讀取圖像,它已經讀取,並在完成第一個文件夾後,開始讀取第二個文件夾的圖像。
如何解決這個問題?
CODE:
進口操作系統,SYS
import glob
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
.....4 folder path's variable...
extension = ['*.jpeg', '*.jpg']
files=[]
....
for e in extension:
directory = os.path.join(image_path_face, e)
fileList = glob.glob(directory)
for f in fileList:
files.append(f)
#Loads label file, strips off carriage return
label_lines = [line.rstrip() for line in tf.gfile.GFile(label_path)]
#Unpersists graph from file
with tf.gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
# Read in the image_data
for file in files:
image_data = tf.gfile.FastGFile(file, 'rb').read()
tp += 1
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
#print("Image Name: " + file)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
if score > 0.51:
p += 1
print('%s (score = %.5f)' % (human_string, score))
print("Number of correct face detection %s out of %s " % (p, tp))
for e in extension:
directory = os.path.join(image_path_nface, e)
fileList = glob.glob(directory)
for f in fileList:
files.append(f)
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
# Read in the image_data
for file in files:
image_data = tf.gfile.FastGFile(file, 'rb').read()
tn += 1
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
# print("Image Name: " + file)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
if score > 0.51:
n += 1
print('%s (score = %.5f)' % (human_string, score))
print("Number of correct non-face detection %s out of %s " % (n, tn))
輸出是 -
f (score = 0.82634) nf (score = 0.17366) f (score = 0.99175) nf (score = 0.00825) Number of correct face detection 2 out of 2 f (score = 0.82634) nf (score = 0.17366) f (score = 0.99175) nf (score = 0.00825) nf (score = 0.99081) f (score = 0.00919) nf (score = 0.99614) f (score = 0.00386) nf (score = 0.99388) f (score = 0.00612) nf (score = 0.99872) f (score = 0.00128) Number of correct non-face detection 6 out of 6