我可以做一個語音/音頻信號fft,並準確地獲得不同的相位,強度和頻率。我想了解的是爲什麼相位角的某些值變得大於2pi或小於-2pi?我知道我可以做一個相位角的模,所以它不會超過2pi或-2pi,但我想知道爲什麼我可以得到-1343弧度或234弧度的相位角,並且如果還有其他含義具有如此大的相位角。相位角大於2pi和小於-2pi是有意義
一個例子是四元數,它處理更高維數學我們是否因爲沒有考慮到這樣大的負相角和正相角而忽略了某些東西?
我可以做一個語音/音頻信號fft,並準確地獲得不同的相位,強度和頻率。我想了解的是爲什麼相位角的某些值變得大於2pi或小於-2pi?我知道我可以做一個相位角的模,所以它不會超過2pi或-2pi,但我想知道爲什麼我可以得到-1343弧度或234弧度的相位角,並且如果還有其他含義具有如此大的相位角。相位角大於2pi和小於-2pi是有意義
一個例子是四元數,它處理更高維數學我們是否因爲沒有考慮到這樣大的負相角和正相角而忽略了某些東西?
如果您試圖繪製或分析連續相位隨時間變化(頻率調製等)或頻率過高(多極濾波器響應,相位聲碼器或倒譜/倒頻譜),FT頻譜的展開相位角很有用分析或合成),而不會隨着時間的推移不連續性,頻率或者頻率,這可能破壞線性運算,繪製斜率迴歸等。
@ hotpaw的答案是一個好答案。可能出現大相角的另一種情況是鎖相環(PLL)。一個PLL跟蹤相位誤差(即頻率誤差的積分),並試圖使其爲零。相位滯後大於2pi意味着合成振盪器需要捕捉超過整個週期。
具體地用於與四元數的例子中,這可能是因爲你做一些四元數代數運算(與含義是旋轉的組合物),並獲得出來的旋轉角度是這樣的範圍[-2 * pi , 2 * pi]
之外的值。但是這不會破壞數學,你也不會因此而遇到任何問題。只要將角度映射回想要的範圍就可以了。
但是,這個例子與語音信號例子的FFT相位有很大不同。
你覺得這個階段很大嗎? Matlab的'angle'函數應該給你一個範圍+/- pi的結果。 – 2012-04-27 19:44:09
沒有發佈整個代碼這裏是你詢問的部分 我對價值如此之高以及如果他們持有另一種含義的原因更感興趣。但是代碼運行良好,我甚至使用這些值重建了信號,並進行了絕對錯誤檢查並將其檢出。 nfft = 2 ^(nextpow2(length(vp_sig_orig))); \t fftx = fft(vp_sig_orig,nfft); \t NumUniquePts = ceil((nfft + 1)/ 2); \t fftx = fftx(1:NumUniquePts); phase = unwrap(angle(fftx)); – 2012-04-27 20:17:22