1
我正在運行火花流應用程序中的序列化錯誤。下面是我的驅動程序代碼:火花流串行化錯誤
package com.test
import org.apache.spark._
import org.apache.spark.streaming._
import org.json.JSONObject;
import java.io.Serializable
object SparkFiller extends Serializable{
def main(args: Array[String]): Unit ={
val sparkConf = new
SparkConf().setAppName("SparkFiller").setMaster("local[*]")
// println("test")
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.registerKryoClasses(Array(classOf[firehoseToDocumentDB]))
sparkConf.registerKryoClasses(Array(classOf[PushToDocumentDB]))
var TimeStamp_Start = 1493836050
val TimeStamp_Final = 1493836056
var timeStamp_temp = TimeStamp_Start - 5;
// val send_timestamps = new firehoseToDocumentDB(TimeStamp_Start,TimeStamp_Final);
// send_timestamps.onStart();
val ssc = new StreamingContext(sparkConf, Seconds(5))
val lines = ssc.receiverStream(
new firehoseToDocumentDB(TimeStamp_Start.toString(),TimeStamp_Final.toString()))
// val timestamp_stream = ssc.receiverStream(new firehoseToDocumentDB(TimeStamp_Start.toString(),TimeStamp_Final.toString()))
lines.foreachRDD(rdd => {
rdd.foreachPartition(part => {
val dbsender = new PushToDocumentDB();
part.foreach(msg =>{
var jsonobject = new JSONObject(part)
var temp_pitr = jsonobject.getString("pitr")
println(temp_pitr)
if (TimeStamp_Final >= temp_pitr.toLong) {
ssc.stop()
}
dbsender.PushFirehoseMessagesToDocumentDb(msg)
})
// dbsender.close()
})
})
println("line",line)))
println("ankush")
ssc.start()
ssc.awaitTermination()
}
}
當我下面的行添加到代碼
var jsonobject = new JSONObject(part)
var temp_pitr = jsonobject.getString("pitr")
println(temp_pitr)
if (TimeStamp_Final >= temp_pitr.toLong) {
ssc.stop()
}
我得到一個錯誤:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:919)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:918)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:918)
at com.boeing.SparkFiller$$anonfun$main$1.apply(SparkFiller.scala:26)
at com.boeing.SparkFiller$$anonfun$main$1.apply(SparkFiller.scala:25)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.NotSerializableException: org.apache.spark.streaming.StreamingContext
Serialization stack:
- object not serializable (class:
org.apache.spark.streaming.StreamingContext, value:
[email protected])
- field (class: com.boeing.SparkFiller$$anonfun$main$1, name: ssc$1, type:
class org.apache.spark.streaming.StreamingContext)
- object (class com.boeing.SparkFiller$$anonfun$main$1, <function1>)
- field (class: com.boeing.SparkFiller$$anonfun$main$1$$anonfun$apply$1,
name: $outer, type: class com.boeing.SparkFiller$$anonfun$main$1)
- object (class com.boeing.SparkFiller$$anonfun$main$1$$anonfun$apply$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
... 30 more
Process finished with exit code 1
如果我刪除這些代碼行是運作良好。
問題是因爲在rdd中使用了ssc.stop()。如果滿足條件,是否還有其他方法可以從rdd調用關閉鉤子。
你不能在'foreachRDD'內執行'ssc.stop()',你應該等待完成。 – freedev
爲什麼不在'ssc.awaitTermination()'之後添加'ssc.stop()'? – freedev
@freedev我保留的原因是我想停止火花執行,如果它滿足if條件。 –