0
我想創建隨機權重在keras中的神經網絡。我正在使用模型的set_weights()函數來分配隨機權重。但是,無論權重如何,model.predict()都會在某個輸入上提供相同的輸出。每次運行程序時輸出都不一樣,但程序運行時卻是一樣的。下面是代碼:模型重量不變Keras
ConnectFourAI.py:
from keras.models import Sequential
from keras.layers import Dense
from minimax2 import ConnectFour
import numpy as np
from time import sleep
import itertools
import random
import time
def get_model():
model = Sequential()
model.add(Dense(630, input_dim=84, kernel_initializer='uniform', activation='relu'))
model.add(Dense(630,kernel_initializer='normal', activation='relu'))
model.add(Dense(7, kernel_initializer='normal', activation='relu'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
map = {
'x':[1,0],
' ':[0,0],
'o':[0,1]
}
model = get_model()
def get_AI_move(grid):
global model
inp = np.array(list(itertools.chain.from_iterable([map[t] for t in np.array(grid).reshape(42)]))).reshape(1,84)
nnout = model.predict(inp)
# print(list(nnout[0]))
out = np.argmax(nnout)
while grid[0][out] != " ":
out = np.random.randint(7)
print("out = %d"%out)
return out
shapes = [(w.shape) for w in model.get_weights()]
print(list(model.get_weights()[0][0][0:5]))
def score_func(x, win):
if win == "x":
return 10000
elif win == " ":
return 2000
else:
return x**2
if __name__=="__main__":
for i in range(100):
weights = [np.random.randn(*s) for s in shapes]
# print(list(weights[0][0][0:5]))
model.set_weights(weights)
print(list(model.get_weights()[0][0][0:5]))
game = ConnectFour()
game.start_new()
rounds = game._round
win = game._winner
score = score_func(rounds, win)
print("%dth game scored %.3f"%(i+1,score))
seed = int(time.time()* 10**6)%(2**32)+1
np.random.seed(seed)
要重現此錯誤,你需要一個額外的文件。在這個文件中一切都可以,但唯一的隨機調用總是給出相同的值。這裏是file。
你在哪裏擬合訓練數據模型? –
我是永遠不會適應神經網絡的任何數據。我想通過演化算法來決定權重。我想創建100個隨機神經網絡,挑選最好的神經網絡,稍微修改它們的權重並重復。 –
@SagarRohankar你知道爲什麼會發生這種情況嗎?你能儘量重新創建我的問題嗎? –