0
說,這是訓練和測試數據:維在keras LSTM模型
X_matrix.shape = (5, 115318, 4) ; Y_matrix.shape = (5, 115318, 51)
,我用的LSTM模式是:
model = Sequential()
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(51, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
然而
,當我運行的模式,它事實證明:
Dense layer expected 2 dimensions but gotten 3
據我所知,我沒有定義輸出層(緻密層)的input_shape,所以爲什麼出現這種情況?