0
我想根據使用支持向量機給出的類來繪製數據。我被困在這個代碼中。我得到這個ValueError:新數組的總大小必須是不變的錯誤。誰能解決?
錯誤被顯示在 - > Z = Z.reshape(XX.shape)
請注意,代碼從sklearn-svm導入。當我嘗試更改提供給應用程序的數據集時,會顯示上述錯誤。
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm,datasets
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
Y = iris.target
Y = np.array(Y)
# figure number
fignum = 1
# fit the model
for kernel in ('linear', 'poly', 'rbf'):
clf = svm.SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)
# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10)
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired)
plt.axis('tight')
x_min = 0
x_max = 10
y_min = 0
y_max = 10
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# Put the result into a color plot
Z = Z.reshape(XX.shape)
#print Z
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],levels=[-.5, 0, .5])
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
fignum = fignum + 1
plt.show()
請更精確。發佈更多信息,例如錯誤發生在哪裏?發佈回溯會有很大幫助。只是發佈其他人應該修復的源代碼不是它的工作方式。 – HelloWorld