這裏,使用timedeltas
創建樣本系列
In [21]: s = pd.to_timedelta(np.arange(100000),unit='s')
In [22]: s
Out[22]:
0 00:00:00
1 00:00:01
2 00:00:02
3 00:00:03
4 00:00:04
5 00:00:05
6 00:00:06
7 00:00:07
8 00:00:08
9 00:00:09
10 00:00:10
11 00:00:11
12 00:00:12
13 00:00:13
14 00:00:14
...
99985 1 days, 03:46:25
99986 1 days, 03:46:26
99987 1 days, 03:46:27
99988 1 days, 03:46:28
99989 1 days, 03:46:29
99990 1 days, 03:46:30
99991 1 days, 03:46:31
99992 1 days, 03:46:32
99993 1 days, 03:46:33
99994 1 days, 03:46:34
99995 1 days, 03:46:35
99996 1 days, 03:46:36
99997 1 days, 03:46:37
99998 1 days, 03:46:38
99999 1 days, 03:46:39
Length: 100000, dtype: timedelta64[ns]
轉換爲字符串,用於測試目的
In [23]: t = s.apply(pd.tslib.repr_timedelta64)
這些都是字符串
In [24]: t.iloc[-1]
Out[24]: '1 days, 03:46:39'
除以一個timedelta64將其轉換爲秒
In [25]: pd.to_timedelta(t.iloc[-1])/np.timedelta64(1,'s')
Out[25]: 99999.0
這是目前配套使用REG -ex,所以從字符串中直接得到的不是很快。
In [27]: %timeit pd.to_timedelta(t)/np.timedelta64(1,'s')
1 loops, best of 3: 1.84 s per loop
這是一個基於日期的時間戳SOLN
由於日期時間已存儲的Int64的,這是很容易的快速
創建一個樣品系列
In [7]: s = Series(date_range('20130101',periods=1000,freq='ms'))
In [8]: s
Out[8]:
0 2013-01-01 00:00:00
1 2013-01-01 00:00:00.001000
2 2013-01-01 00:00:00.002000
3 2013-01-01 00:00:00.003000
4 2013-01-01 00:00:00.004000
5 2013-01-01 00:00:00.005000
6 2013-01-01 00:00:00.006000
7 2013-01-01 00:00:00.007000
8 2013-01-01 00:00:00.008000
9 2013-01-01 00:00:00.009000
10 2013-01-01 00:00:00.010000
11 2013-01-01 00:00:00.011000
12 2013-01-01 00:00:00.012000
13 2013-01-01 00:00:00.013000
14 2013-01-01 00:00:00.014000
...
985 2013-01-01 00:00:00.985000
986 2013-01-01 00:00:00.986000
987 2013-01-01 00:00:00.987000
988 2013-01-01 00:00:00.988000
989 2013-01-01 00:00:00.989000
990 2013-01-01 00:00:00.990000
991 2013-01-01 00:00:00.991000
992 2013-01-01 00:00:00.992000
993 2013-01-01 00:00:00.993000
994 2013-01-01 00:00:00.994000
995 2013-01-01 00:00:00.995000
996 2013-01-01 00:00:00.996000
997 2013-01-01 00:00:00.997000
998 2013-01-01 00:00:00.998000
999 2013-01-01 00:00:00.999000
Length: 1000, dtype: datetime64[ns]
轉換爲ns自epoch/div除以得到毫秒自紀元(如果你想秒, 除以10 ** 9)
In [9]: pd.DatetimeIndex(s).asi8/10**6
Out[9]:
array([1356998400000, 1356998400001, 1356998400002, 1356998400003,
1356998400004, 1356998400005, 1356998400006, 1356998400007,
1356998400008, 1356998400009, 1356998400010, 1356998400011,
...
1356998400992, 1356998400993, 1356998400994, 1356998400995,
1356998400996, 1356998400997, 1356998400998, 1356998400999])
相當快
In [12]: s = Series(date_range('20130101',periods=1000000,freq='ms'))
In [13]: %timeit pd.DatetimeIndex(s).asi8/10**6
100 loops, best of 3: 11 ms per loop
你是如何確定'datetime.strptime'是瓶頸?我不確定'df [:,0]是不是一個複製片(對numpy不夠熟悉),但是複製片和複製列表看起來更適合我。 –