2016-01-08 82 views
0

我在此之前詢問過此問題:Creating a loop for different random forest training algoritms但尚未得到正確的答案。因此,另外一個更具可重現性的例子的嘗試。使用各種列訓練隨機森林算法

我有以下數據集:

train <- read.csv(url("http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv")) 
test <- read.csv(url("http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/test.csv")) 
train <- train[complete.cases(train), ] 

我想運行幾個隨機森林algoritms,看看哪一個性能最佳。所以我基本上想要做的是:

#predict based on Pclass 
fit <- randomForest(as.factor(Survived) ~ Pclass, data=train, importance=TRUE, ntree=2000) 
Prediction <- predict(fit, test) 
#fetch accuracy 


#predict based on Pclass and Sex 
fit <- randomForest(as.factor(Survived) ~ Pclass + Sex, data=train, importance=TRUE, ntree=2000) 
Prediction <- predict(fit, test) 
#fetch accuracy 

我想創造一些類型的循環,這樣我可以循環存儲列表中的所有值,然後在其上。所以像這樣:

list <- c(Pclass, Pclass + Sex) 


for (R in list) { 
    modfit <- paste0("won ~ ", R, ", data=training, method=\"rf\", prox=\"TRUE") 
    modfit <- as.formula(modfit) 
train(modfit) 
} 

但上面的代碼不起作用。它給我以下錯誤:

Error in parse(text = x, keep.source = FALSE) : 
<text>:1:13: unexpected ',' 
1: won ~ Pclass, 

任何想法,我怎麼能得到這個工作?

回答

0
for (R in list) { 
modfit <- paste0("won ~ ", R, "data=training, method=\"rf\", prox=\"TRUE") 
modfit <- as.formula(modfit) 
train(modfit) 
} 

你可能得了數據之前,逗號訓練並不需要在那裏