我試圖建立一個電動汽車充電事件數據的分類模型。我想預測充電站是否可以在特定的時間點使用。我有下面的代碼工作:sklearn隨機森林準確性分數相同的訓練和測試數據
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
raw_data = pd.read_csv('C:/temp/sample_dataset.csv')
raw_test = pd.read_csv('C:/temp/sample_dataset_test.csv')
print ('raw data shape: ', raw_test.shape)
#choose which columns to dummify
X_vars = ['station_id', 'day_of_week', 'epoch', 'station_city',
'station_county', 'station_zip', 'port_level', 'perc_local_occupancy',
'ports_at_station', 'avg_charge_duration']
y_var = ['target_variable']
categorical_vars = ['station_id','station_city','station_county']
#split X and y in training and test
X_train = raw_data.loc[:,X_vars]
y_train = raw_data.loc[:,y_var]
X_test = raw_test.loc[:,X_vars]
y_test = raw_test.loc[:,y_var]
#make dummy variables
X_train = pd.get_dummies(X_train, columns = categorical_vars)
X_test = pd.get_dummies(X_test, columns=categorical_vars)
print('train size', X_train.shape, '\ntest size', X_test.shape)
# Train uncalibrated random forest classifier on whole train and evaluate on test data
clf = RandomForestClassifier(n_estimators=100, max_depth=2)
clf.fit(X_train, y_train.values.ravel())
print ('RF accuracy: TRAINING', clf.score(X_train,y_train))
print ('RF accuracy: TESTING', clf.score(X_test,y_test))
結果
raw data shape: (1000000, 15)
train size (1000000, 125)
test size (1000000, 125)
RF accuracy: TRAINING 0.831456
RF accuracy: TESTING 0.831456
我的問題是,爲什麼是訓練和測試精度完全一樣?我跑了很多次,總是一模一樣。有任何想法嗎? (我已檢查確保原始數據不同)
有沒有關於'raw_data'大小的信息。你是否期望在'raw_train'和'raw_test'集合中具有完全相同的觀察數量? –
您正在測試和培訓相同的數據。 'X_train == X_test'是'True'。使用scikit-learn的'test_train_split'函數或某種形式的交叉驗證迭代器。 –