我試圖訓練一個LSTM網絡,它以一種方式成功訓練,但以另一種方式拋出錯誤。在第一個例子中,我使用numpy重塑重塑了輸入數組X,並以另一種方式使用tensorflow重塑重塑它。Tensorflow tf.reshape()似乎行爲不同numpy.reshape()
正常工作:
import numpy as np
import tensorflow as tf
import tensorflow.contrib.learn as learn
# Parameters
learning_rate = 0.1
training_steps = 3000
batch_size = 128
# Network Parameters
n_input = 4
n_steps = 10
n_hidden = 128
n_classes = 6
X = np.ones([1770,4])
y = np.ones([177])
# NUMPY RESHAPE OUTSIDE RNN_MODEL
X = np.reshape(X, (-1, n_steps, n_input))
def rnn_model(X, y):
# TENSORFLOW RESHAPE INSIDE RNN_MODEL
#X = tf.reshape(X, [-1, n_steps, n_input]) # (batch_size, n_steps, n_input)
# # permute n_steps and batch_size
X = tf.transpose(X, [1, 0, 2])
# # Reshape to prepare input to hidden activation
X = tf.reshape(X, [-1, n_input]) # (n_steps*batch_size, n_input)
# # Split data because rnn cell needs a list of inputs for the RNN inner loop
X = tf.split(0, n_steps, X) # n_steps * (batch_size, n_input)
# Define a GRU cell with tensorflow
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden)
# Get lstm cell output
_, encoding = tf.nn.rnn(lstm_cell, X, dtype=tf.float32)
return learn.models.logistic_regression(encoding, y)
classifier = learn.TensorFlowEstimator(model_fn=rnn_model, n_classes=n_classes,
batch_size=batch_size,
steps=training_steps,
learning_rate=learning_rate)
classifier.fit(X,y)
不起作用:
import numpy as np
import tensorflow as tf
import tensorflow.contrib.learn as learn
# Parameters
learning_rate = 0.1
training_steps = 3000
batch_size = 128
# Network Parameters
n_input = 4
n_steps = 10
n_hidden = 128
n_classes = 6
X = np.ones([1770,4])
y = np.ones([177])
# NUMPY RESHAPE OUTSIDE RNN_MODEL
#X = np.reshape(X, (-1, n_steps, n_input))
def rnn_model(X, y):
# TENSORFLOW RESHAPE INSIDE RNN_MODEL
X = tf.reshape(X, [-1, n_steps, n_input]) # (batch_size, n_steps, n_input)
# # permute n_steps and batch_size
X = tf.transpose(X, [1, 0, 2])
# # Reshape to prepare input to hidden activation
X = tf.reshape(X, [-1, n_input]) # (n_steps*batch_size, n_input)
# # Split data because rnn cell needs a list of inputs for the RNN inner loop
X = tf.split(0, n_steps, X) # n_steps * (batch_size, n_input)
# Define a GRU cell with tensorflow
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden)
# Get lstm cell output
_, encoding = tf.nn.rnn(lstm_cell, X, dtype=tf.float32)
return learn.models.logistic_regression(encoding, y)
classifier = learn.TensorFlowEstimator(model_fn=rnn_model, n_classes=n_classes,
batch_size=batch_size,
steps=training_steps,
learning_rate=learning_rate)
classifier.fit(X,y)
後者引發以下錯誤:
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell.BasicLSTMCell object at 0x7f1c67c6f750>: Using a concatenated state is slower and will soon be deprecated. Use state_is_tuple=True.
Traceback (most recent call last):
File "/home/blabla/test.py", line 47, in <module>
classifier.fit(X,y)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/base.py", line 160, in fit
monitors=monitors)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 484, in _train_model
monitors=monitors)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/graph_actions.py", line 328, in train
reraise(*excinfo)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/graph_actions.py", line 254, in train
feed_dict = feed_fn() if feed_fn is not None else None
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 366, in _feed_dict_fn
out.itemset((i, self.y[sample]), 1.0)
IndexError: index 974 is out of bounds for axis 0 with size 177
請幫我一把。我爲此瘋狂。 :( – Jbravo