我在Windows 8和Python 3.5上使用TensorFlow
。我改變了this的簡短例子,看看如果GPU支持(Titan X)
)。不幸的是,運行時(tf.device("/gpu:0"
)和沒有(tf.device("/cpu:0"
))使用GPU是相同的。 Windows CPU監視顯示,在這兩種情況下,計算過程中的CPU負載約爲100%。TensorFlow似乎不使用GPU
這是代碼例如:
import numpy as np
import tensorflow as tf
import datetime
#num of multiplications to perform
n = 100
# Create random large matrix
matrix_size = 1e3
A = np.random.rand(matrix_size, matrix_size).astype('float32')
B = np.random.rand(matrix_size, matrix_size).astype('float32')
# Creates a graph to store results
c1 = []
# Define matrix power
def matpow(M, n):
if n < 1: #Abstract cases where n < 1
return M
else:
return tf.matmul(M, matpow(M, n-1))
with tf.device("/gpu:0"):
a = tf.constant(A)
b = tf.constant(B)
#compute A^n and B^n and store results in c1
c1.append(matpow(a, n))
c1.append(matpow(b, n))
sum = tf.add_n(c1)
t1 = datetime.datetime.now()
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
# Runs the op.
sess.run(sum)
t2 = datetime.datetime.now()
print("computation time: " + str(t2-t1))
這裏是用於GPU情況下的輸出:
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library cublas64_80.dll locally
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library cudnn64_5.dll locally
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library cufft64_80.dll locally
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library nvcuda.dll locally
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\dso_loader.cc:128] successfully opened CUDA library curand64_80.dll locally
C:/Users/schlichting/.spyder-py3/temp.py:16: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
A = np.random.rand(matrix_size, matrix_size).astype('float32')
C:/Users/schlichting/.spyder-py3/temp.py:17: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
B = np.random.rand(matrix_size, matrix_size).astype('float32')
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:885] Found device 0 with properties:
name: GeForce GTX TITAN X
major: 5 minor: 2 memoryClockRate (GHz) 1.076
pciBusID 0000:01:00.0
Total memory: 12.00GiB
Free memory: 2.40GiB
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:906] DMA: 0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:916] 0: Y
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:01:00.0)
D c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\direct_session.cc:255] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:01:00.0
Ievice mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:01:00.0
C:0/task:0/gpu:0
host/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_108: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_109: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_110: (MatMul)/job:localhost/replicacalhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_107: (MatMul)/job:localgpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_103: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_104: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_105: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_106: (MatMul)/job:lo c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] Const_1: (Const)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_100: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_101: (MatMul)/job:localhost/replica:0/task:0/gpu:0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\simple_placer.cc:827] MatMul_102: (MatMul)/job:localhost/replica:0/task:0/Ionst_1: (Const): /job:localhost/replica:0/task:0/gpu:0
MatMul_100: (MatMul): /job:localhost/replica:0/task:0/gpu:0
MatMul_101: (MatMul): /job:localhost/replica:0/task:0/gpu:0
...
MatMul_198: (MatMul): /job:localhost/replica:0/task:0/gpu:0
MatMul_199: (MatMul): /job:localhost/replica:0/task:0/gpu:0
Const: (Const): /job:localhost/replica:0/task:0/gpu:0
MatMul: (MatMul): /job:localhost/replica:0/task:0/gpu:0
MatMul_1: (MatMul): /job:localhost/replica:0/task:0/gpu:0
MatMul_2: (MatMul): /job:localhost/replica:0/task:0/gpu:0
MatMul_3: (MatMul): /job:localhost/replica:0/task:0/gpu:0
...
MatMul_98: (MatMul): /job:localhost/replica:0/task:0/gpu:0
MatMul_99: (MatMul): /job:localhost/replica:0/task:0/gpu:0
AddN: (AddN): /job:localhost/replica:0/task:0/gpu:0
computation time: 0:00:05.066000
在CPU的情況下,輸出是相同的,與CPU:0而不是gpu:0
。計算時間不會改變。我甚至使用更多的操作,例如運行時間約爲1分鐘,GPU和CPU相等。 非常感謝提前!
謝謝!現在它起作用了,GPU比CPU快大約20倍。 – user3641158
看起來像矩陣創建tensorflow方法,這裏tf.random_normal(),必須使用,而不是用np.random.rand()定義numpy矩陣。 – user3641158