這個問題可能主要是爲了或多或少地推動天文學家的進步。在Python中調整NVSS FITS格式文件的大小並在這個文件中進行運算
你知道如何將NVSS適合文件轉換爲只有2(不是4!)軸?或者當我試圖在光學DSS數據上覆蓋nvss計數時,如何使用Python的astropy和其他「astro」庫來處理具有4軸的文件,並在Python中產生以下錯誤? (下面的代碼)
我試圖做到這一點,當有帖4軸爲NVSS FITS,有錯誤和警告信息:
警告:FITSFixedWarning:WCS的改造有更多的軸(4) (2)[astropy.wcs.wcs] 警告:FITSFixedWarning:'datfix'進行了更改'無效參數值:無效日期'19970331''。 [astropy.wcs.wcs] re-sizing a fits image in python
警告:FITSFixedWarning:'datfix'進行了更改'無效參數值:無效日期'19970331''。 [astropy.wcs.wcs] Traceback(最近呼叫的最後一個): 文件「p.py」,第118行,在 cont2 = ax [Header2] .contour(opt.data,[-8,-2,2 ,4],colors =「r」,linewidth = 10,zorder = 2) 文件「/home/ela/anaconda2/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/parasite_axes.py」,第195行,在輪廓 return self._contour(「contour」,* XYCL,** kwargs) 文件「/home/ela/anaconda2/lib/python2.7/site-packages/mpl_toolkits/axes_grid1/parasite_axes.py」,第167行在_contour NY中,nx = C.shape ValueError異常:值過多解壓
我還試圖使用FITS_tools/match_images.py來調整NVSS第一裝配到正常的2軸SIZ然後使用正確的文件,而不是原來的,但它只會給我一個錯誤:
回溯(最近呼叫最後): 文件「p.py」,第64行, in im1,im2 = FITS_tools.match_fits(to_be_projected,reference_fits) 文件「/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/match_images.py」,第105行,在match_fits中 image1_projected = project_to_header (fitsfile1,header,** kwargs) 文件「/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/match_images.py」,第64行,在project_to_header中 ** kwargs) 文件「/ home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/hcongrid.py「,第49行,在hcongrid grid1 = get_pixel_mapping(header1,header2) get_pixel_mapping中的文件「/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/hcongrid.py」,第128行 csys2 = _ctype_to_csys(wcs2.wcs) 文件「/home/ela/anaconda2/lib/python2.7/site-packages/FITS_tools/hcongrid.py」,第169行,在_ctype_to_csys中 raise NotImplementedError(「不允許非fk4/fk5分點」) NotImplementedError :非fk4/fk5分點不允許
我不知道該怎麼做。 FIRST.FITS文件沒有類似的問題。 Python中的Imsize也告訴我NVSS是唯一一個例如4維的(1,1,250,250)。所以它不能疊加在properley上。你有什麼主意嗎?請幫助我,我可以捐助你的項目。我花了幾天的時間試圖解決它,但它仍然無法正常工作,但我絕望地需要它。
CODE
# Import matplotlib modules
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from matplotlib.axes import Axes
import matplotlib.cm as cm
from matplotlib.patches import Ellipse
import linecache
import FITS_tools
# Import numpy and scipy for filtering
import scipy.ndimage as nd
import numpy as np
import pyfits
import matplotlib.pyplot
import pylab
#Import astronomical libraries
from astropy.io import fits
import astropy.units as u
#from astroquery.ned import Ned
import pywcsgrid2
# Read and prepare the data
file1=open('/home/ela/file')
count=len(open('file', 'rU').readlines())
print count
for i in xrange(count):
wiersz=file1.readline()
title=str(wiersz)
print title
title2=title.strip("\n")
print title2
path = '/home/ela/'
fitstitle = path+title2+'_DSS.FITS'
fitstitle2 = path+title2+'_FIRST.FITS'
fitstitle3 = path+title2+'_NVSS.FITS'
datafile = path+title2
outtitle = path+title2+'.png'
print outtitle
print datafile
nvss = fits.open(fitstitle)[0]
first = fits.open(fitstitle2)[0]
opt = fits.open(fitstitle3)[0]
try:
fsock = fits.open(fitstitle3) #(2)
except IOError:
print "Plik nie istnieje"
print "Ta linia zawsze zostanie wypisana" #(3)
opt.verify('fix')
first.verify('fix')
nvss.verify('fix')
Header = nvss.header
Header2 = first.header
Header3 = opt.header
to_be_projected = path+title2+'_NVSS.FITS'
reference_fits = path+title2+'_DSS.FITS'
im1,im2 = FITS_tools.match_fits(to_be_projected,reference_fits)
print(opt.shape)
print(first.shape)
print(nvss.shape)
print(im2.shape)
#We select the range we want to plot
minmax_image = [np.average(nvss.data)-6.*np.std(nvss.data), np.average(nvss.data)+5.*np.std(nvss.data)] #Min and max value for the image
minmax_PM = [-500., 500.]
# PREPARE PYWCSGRID2 AXES AND FIGURE
params = {'text.usetex': True,'font.family': 'serif', 'font.serif': 'Times New Roman'}
plt.rcParams.update(params)
#INITIALIZE FIGURE
fig = plt.figure(1)
ax = pywcsgrid2.subplot(111, header=Header)
#CREATE COLORBAR AXIS
divider = make_axes_locatable(ax)
cax = divider.new_horizontal("5%", pad=0.1, axes_class=Axes)
#fig.add_axes(cax)
#Configure axis
ax.grid() #Will plot a grid in the figure
# ax.set_ticklabel_type("arcmin", center_pixel=[Header['CRPIX1'],Header['CRPIX2']]) #Coordinates centered at the galaxy
ax.set_ticklabel_type("arcmin") #Coordinates centered at the galaxy
ax.set_display_coord_system("fk5")
# ax.add_compass(loc=3) #Add a compass at the bottom left of the image
#Plot the u filter image
i = ax.imshow(nvss.data, origin="lower", interpolation="nearest", cmap=cm.bone_r, vmin= minmax_image[0], vmax = minmax_image[1], zorder = 0)
#Plot contours from the infrared image
cont = ax[Header2].contour(nd.gaussian_filter(first.data,4),2 , colors="r", linewidth = 20, zorder = 2)
# cont = ax[Header2].contour(first.data, [-2,0,2], colors="r", linewidth = 20, zorder = 1)
# cont2 = ax[Header2].contour(opt.data, [-8,-2,2,4], colors="r", linewidth = 10, zorder = 2)
#Plot PN positions with color coded velocities
# Velocities = ax['fk5'].scatter(Close_to_M31_PNs['RA(deg)'], Close_to_M31_PNs['DEC(deg)'], c = Close_to_M31_PNs['Velocity'], s = 30, cmap=cm.RdBu, edgecolor = 'none',
# vmin = minmax_PM[0], vmax = minmax_PM[1], zorder = 2)
f2=open(datafile)
count2=len(open('f2', 'rU').readlines())
print count2
for i in xrange(count):
xx=f2.readline()
# print xx
yy=f2.readline()
xxx=float(xx)
print xxx
yyy=float(yy)
print yyy
Velocities = ax['fk5'].scatter(xxx, yyy ,c=40, s = 200, marker='x', edgecolor = 'red', vmin = minmax_PM[0], vmax = minmax_PM[1], zorder = 1)
it2 = ax.add_inner_title(title2, loc=1)
# Plot the colorbar, with the v_los of the PN
# cbar = plt.colorbar(Velocities, cax=cax)
# cbar.set_label(r'$v_{los}[$m s$^{-1}]$')
# set_label('4444')
plt.show()
plt.savefig(outtitle)
#plt.savefig("image1.png")
這是誣陷,不良Q.請查閱:-http:// stackoverflow.com/help/how-to-ask – Dravidian
我並不確定你想要做什麼,但是如果你想要重複繪製圖片,請查看[reproject](http:// reproject)。 readthedocs.io/en/stable/)。至於WCS,你可以實例化一個['astropy.wcs.WCS'](http://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS)對象通過使用'naxis'關鍵字來指示哪些(2)軸使用;或者使用'WCS(header).celestial'。 – Evert