1
這是一些可重複的代碼。我想知道當功能是單熱編碼時每個功能的SE計算是什麼。如果我想給我自己的嘗試:如何解釋一個熱編碼變量的Autoencoder anomoly SE?
它看起來像一些社會企業是1,我想這意味着重建是100%確定它是一回事,但它實際上是另一回事。對於分數誤差,它們是否代表了從softmax分類器分配給該類別的概率的不同程度的錯誤?
library(h2o)
art <- data.frame(a = c("a","b","a","c","d","e","g","f","a"),
b = c("b","c","d","e","b","c","d","e","b"),
c = c(4,3,2,5,6,1,2,3,5))
dl = h2o.deeplearning(x = c("a","b","c"), training_frame = as.h2o(art),
autoencoder = TRUE,
reproducible = T,
seed = 1234,
hidden = c(1), epochs = 1)
sus.anon = h2o.anomaly(dl, as.h2o(art), per_feature=TRUE)