我正在尋找一種更好的方式來使用SciPy的的我目前用它來適應參數的線性組合curve_fit()創建擬合函數與SciPy的變化Python中的參數個數更好的辦法curve_fit
和矢量x 。
例如,這裏是一個擬合函數我通過用於與5點的參數嘗試配合,M0-M4:
def degFour(x, m0, m1, m2, m3, m4):
return x[0]*m0 + x[1]*m1 + x[2]*m2 + x[3]*m3 + x[4]*m4
我已經作出多種這些起來使用相同的圖案degTen。它也可以工作。
我的X矢量:
[[ 1. 1. 1. 1. 1. ]
[ 1. 0.99990931 0.99963727 0.99918392 0.99854935]
[ 1. 0.94872591 0.80016169 0.56954235 0.28051747]
[ 1. 0.84717487 0.43541052 -0.10943716 -0.62083535]
[ 1. 0.77991807 0.21654439 -0.44214431 -0.90621706]
[ 1. 0.73162055 0.07053725 -0.62840754 -0.99004899]
[ 1. 0.68866877 -0.05147065 -0.75956123 -0.99470154]
[ 1. 0.64892616 -0.15778967 -0.85371386 -0.95020484]
[ 1. 0.6114128 -0.25234877 -0.91999134 -0.8726402 ]
[ 1. 0.57600247 -0.33644232 -0.96358568 -0.77361313]
[ 1. 0.54225052 -0.41192874 -0.98898767 -0.66062942]
[ 1. 0.29541145 -0.82546415 -0.78311458 0.36278212]
[ 1. 0.09546594 -0.98177251 -0.28291761 0.92775452]
[ 1. -0.07539697 -0.9886306 0.22447646 0.95478091]
[ 1. -0.22050008 -0.90275943 0.61861713 0.62994918]
[ 1. -0.33964821 -0.76927818 0.86221613 0.18357784]
[ 1. -0.54483185 -0.40631651 0.9875802 -0.66981378]
[ 1. -0.71937092 0.03498904 0.66903073 -0.99755153]
[ 1. -1. 1. -1. 1. ]]
我的Y數據:
[ 3.50032 3.5007 3.6328 3.94564 4.12814 4.2651 4.39586
4.51982 4.64394 4.76738 4.88654 5.90314 6.93304 7.99074
9.04278 10.02426 12.01392 14.0592 18.1689 ]
使用curve_fit(degFour,xdata.T,YDATA),我得到正確的係數:
[ 9.14562709 -7.05004692 1.66932215 -0.27868686 0.02097462]
我根據度數重新創建x數據,所以我會始終傳遞正確形狀的數據。
我試着版本的fbstj's answer關於變量輸入參數。
我用這個:
def vararg(x, *args):
return sum(a * x[i] for i, a in enumerate(args))
,並結束了與此:
Traceback (most recent call last):
File "D:/Libraries/Desktop/PScratch2/vararg.py", line 18, in <module>
print(curve_fit(vararg, deg4kary.T, deg4ydata))
File "C:\Python35\lib\site-packages\scipy\optimize\minpack.py", line 606, in curve_fit
raise ValueError("Unable to determine number of fit parameters.")
ValueError: Unable to determine number of fit parameters.
你可以從跟蹤看,我剛剛通過函數本身。我被卡住了。
您是否嘗試過使用樣條曲線? –
我在這裏展示的這些數據是更大集合的一部分。該集合被分解成子集並進行擬合。結果擬合及其一階導數必須分段連續。還有其他的事情在發揮,但據我所知,我必須使用這種方法。 – Chris
三次樣條的定義是具有分段連續一階導數的立方分段連續插值函數。我會嘗試使用'scipy.interpolate.InterpolatedUnivariateSpline'。 [文檔](http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline。html) –