我使用arima()
和R的auto.arima()
獲得銷售的預測。這些數據在三週的時間裏處於一週水平。錯誤的R華宇:太少非缺失觀測
我的代碼如下所示:
x<-c(1571,1501,895,1335,2306,930,2850,1380,975,1080,990,765,615,585,838,555,1449,615,705,465,165,630,330,825,555,720,615,360,765,1080,825,525,885,507,884,1230,342,615,1161, 1585,723,390,690,993,1025,1515,903,990,1510,1638,1461.67,1082,1075,2315,1014,2140,1572,794,1363,1184,1248,1344,1056,816,720,896,608,624,560,512,304,640,640,704,1072,768, 816,640,272,1168,736,1003,864,658.67,768,841,1727,944,848,432,704,850.67,1205,592,1104,976,629,814,1626,933.33,1100.33,1730,2742,1552,1038,826,1888,1440,1372,824,1824,1392,1424,768,464, 960,320,384,512,478,1488,384,338.67,176,624,464,528,592,288,544,418.67,336,752,400,1232,477.67,416,810.67,1256,1040,823,240,1422,704,718,1193,1541,1008,640,752, 1008,864,1507,4123,2176,899,1717,935)
length_data<-length(x)
length_train<-round(length_data*0.80)
forecast_period<-length_data-length_train
train_data<-x[1:length_train]
train_data<-ts(train_data,frequency=52,start=c(1,1))
validation_data<-x[(length_train+1):length_data]
validation_data<-ts(validation_data,frequency=52,start=c(ceiling((length_train)/52),((length_train)%%52+1)))
arima_output<-auto.arima(train_data) # fit the ARIMA Model
arima_validate <- Arima(x=validation_data,model=arima_output)
錯誤:
Error in stats::arima(x = x, order = order, seasonal = seasonal, include.mean = include.mean, :
too few non-missing observations
我做錯了嗎? 什麼是「太少非缺失意見」是什麼意思?我現在搜索了它,但沒有得到任何更好的解釋。
感謝任何形式的幫助!
你讀過的評論[您的文章在交叉驗證(http://stats.stackexchange.com/questions/126624/error-in -arima-的-R太爲數不多的非缺失觀測)? – 2014-12-04 16:00:31
我修改了這個問題。我希望我已經涵蓋了所需的/相關的信息。讓我知道如果我失去了一些東西。 – Arushi 2014-12-04 18:19:01