我很好奇什麼是最好的方法來處理標記化/索引術語(在Lucene中)或任何搜索引擎,以便這些搜索匹配相應的術語。搜索索引 - 12 =十二
「12」= 「十二條」
「MX1」= 「MX一個」
是否有任何內置的功能,我忽略了?
我很好奇什麼是最好的方法來處理標記化/索引術語(在Lucene中)或任何搜索引擎,以便這些搜索匹配相應的術語。搜索索引 - 12 =十二
「12」= 「十二條」
「MX1」= 「MX一個」
是否有任何內置的功能,我忽略了?
Lucene最簡單的方法是創建2個獨立的令牌過濾器,在初始字符串被標記後使用。第一個需要在數字序列和非數字序列之間進行分割。然後第二個將數字(數字字符串)轉換爲它們的數字(拼寫)數字。
下面是與PyLucene(不包括偏移和位置屬性的邏輯)的例子:
class AlphaNumberBoundaryFilter(lucene.PythonTokenFilter):
seq = re.compile(r"((?:\d+")|(?:\D+))")
def __init__(self, in_stream):
lucene.PythonTokenFilter.__init__(self, in_stream)
term = self.term = self.addAttribute(lucene.TermAttribute.class_)
# Get tokens.
tokens = []
while in_stream.incrementToken():
tokens.append(term.term())
# Filter tokens.
self.tokens = self.filter(tokens)
# Setup iterator.
self.iter = iter(self.tokens)
def filter(self, tokens):
seq = self.seq
return [split for token in tokens for split in seq.findall(token)]
def incrementToken(self):
try:
self.term.setTermBuffer(next(self.iter))
except StopIteration:
return False
return True
class NumberToWordFilter(lucene.PythonTokenFilter):
num_map = {0: "zero", 1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine", 10: "ten", 11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen", 15: "fifteen", 16: "sixteen", 17: "seventeen", 18: "eighteen", 19: "nineteen", 20: "twenty", 30: "thirty", 40: "forty", 50: "fifty", 60: "sixty", 70: "seventy", 80: "eighty", 90: "ninety", 100: "hundred", 1000: "thousand", 1000000: "million"}
is_num = re.compile(r"^\d+$")
def __init__(self, in_stream):
lucene.PythonTokenFilter.__init__(self, in_stream)
term = self.term = self.addAttribute(lucene.TermAttribute.class_)
# Get tokens.
tokens = []
while in_stream.incrementToken():
tokens.append(term.term())
# Filter tokens.
self.tokens = self.filter(tokens)
# Setup iterator.
self.iter = iter(self.tokens)
def filter(self, tokens):
num_map = self.num_map
is_num = self.is_num
final = []
for token in tokens:
if not is_num.match(token):
final.append(token)
continue
# Reverse digits from token.
digits = token.lstrip('0')[::-1]
if not digits:
# We have a zero.
final.append(num_map[0])
continue
# Group every 3 digits and iterate over digit groups in reverse
# so that groups are yielded in the original order and in each
# group: 0 -> ones, 1 -> tens, 2 -> hundreds
groups = [digits[i:i+3] for i in xrange(0, len(digits), 3)][::-1]
scale = len(groups) - 1
result = []
for oth in groups:
l = len(oth)
if l == 3 and oth[2] != '0':
# 2 -> x
# 1 -> .
# 0 -> .
result.append(num_map[int(oth[2])])
result.append(num_map[100])
if l >= 2:
if oth[1] == '1':
# 1 -> 1
# 0 -> x
result.append(num_map[int(oth[1::-1])])
else:
if oth[1] != '0':
# 1 -> x (x >= 2)
# 0 -> x
result.append(num_map[int(oth[1]) * 10])
if oth[0] != '0':
result.append(num_map[int(oth[0])])
elif oth[0] != '0':
# 0 -> x
result.append(num_map[int(oth[0])])
# Add scale modifier.
s = scale
if s % 2:
result.append(num_map[1000])
while s >= 2:
result.append(num_map[1000000])
s -= 2
scale -= 1
final.extend(result)
return final
def incrementToken(self):
try:
self.term.setTermBuffer(next(self.iter))
except StopIteration:
return False
return True
你看過Lucene SynonymFilter?
會不會使用SynonymFilter與SynonymMap需要你提前適應每一種可能的映射? – 2012-03-10 18:12:27
是的。但是,在使用同義詞時,由於IDF的原因,您最好提前做些事情。見http://stackoverflow.com/questions/7272368/change-dynamically-elasticsearch-synonyms/7273651#7273651 – jpountz 2012-03-19 15:12:31