2015-09-08 236 views
3

之後創建預測矩陣I具有的數據集是這樣的:滾動窗口

data <- as.zoo(ts.union(a=arima.sim(model=list(ar=c(.9,-.2)), n=144), 
         b=arima.sim(model=list(ar=c(.6, -.3)), n=144), 
         c=arima.sim(model=list(ar=c(-.2,-.6)), n=144))) 

我製成的滾動窗口預測a,它提供的6步驟的每個步驟:

rolling.window <- rollapply(data, width = 132, 
          FUN = function(x) predict(VAR(x, type="const", ic="FPE"), 
                n.ahead=6, ci=0.95)$fcst$a[,1], 
         by.column = F, align = "right") 

head(rolling.window) 

132 0.086474 0.031416 0.00071186 -0.016284 -0.025615 -0.030692 
133 1.289223 0.762734 0.46166288 0.284157 0.180816 0.120837 
134 0.307354 0.332732 0.28306490 0.223481 0.171789 0.132596 
135 0.105074 0.148357 0.14704495 0.128852 0.109577 0.093722 
136 -0.469992 -0.496095 -0.39268676 -0.263921 -0.155009 -0.074600 
137 -1.047158 -0.720692 -0.45201041 -0.251064 -0.115632 -0.029640 
提前預測

現在,我想自動保存這些預測在矩陣(或多個時間序列對象)這樣的:

 w132  w133 w134  w135  w136  w137 
133 0.08647370 NA  NA  NA  NA  NA 
134 0.03141553 1.28922 NA  NA  NA  NA 
135 0.00071186 0.76273 0.30735 NA  NA  NA 
136 -0.01628371 0,46166 0.33273 0.105074 NA  NA 
137 -0.02561482 0.28416 0.28306 0.148357 -0.46999 NA 
138 -0.03069235 0.18082 0.22348 0.147045 -0.49610 -1.04716 
139  NA  0.12084 0.17179 0.128852 -0.39269 -0.72069 
140  NA  NA 0.13260 0.109577 -0.26392 -0.45201 
141  NA  NA  NA 0.093722 -0.15501 -0.25106 
142  NA  NA  NA  NA -0.07460 -0.11563 
143  NA  NA  NA  NA  NA -0.02964 

等等。我希望每個滾動窗口都能在相應的時間提前6步預測。不幸的是,我完全不知道我應該從哪裏開始。我嘗試了lag(),但這隻適用於一個系列。我也無法解決,我如何在rollapply()函數中做到這一點。你能給我一個提示嗎?

回答

2

你可以這樣做:

do.call(cbind, lapply(1:nrow(df), function(i) c(rep(NA,i-1), df[i,], rep(NA, nrow(df)-i)))) 

    [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  
V2 0.086474 NA  NA  NA  NA   NA   
V3 0.031416 1.289223 NA  NA  NA   NA   
V4 0.00071186 0.762734 0.307354 NA  NA   NA   
V5 -0.016284 0.4616629 0.332732 0.105074 NA   NA   
V6 -0.025615 0.284157 0.2830649 0.148357 -0.469992 NA   
V7 -0.030692 0.180816 0.223481 0.147045 -0.496095 -1.047158 
    NA   0.120837 0.171789 0.128852 -0.3926868 -0.720692 
    NA   NA  0.132596 0.109577 -0.263921 -0.4520104 
    NA   NA  NA  0.093722 -0.155009 -0.251064 
    NA   NA  NA  NA  -0.0746 -0.115632 
    NA   NA  NA  NA  NA   -0.02964 

數據:

df = structure(list(V2 = c(0.086474, 1.289223, 0.307354, 0.105074, 
-0.469992, -1.047158), V3 = c(0.031416, 0.762734, 0.332732, 0.148357, 
-0.496095, -0.720692), V4 = c(0.00071186, 0.46166288, 0.2830649, 
0.14704495, -0.39268676, -0.45201041), V5 = c(-0.016284, 0.284157, 
0.223481, 0.128852, -0.263921, -0.251064), V6 = c(-0.025615, 
0.180816, 0.171789, 0.109577, -0.155009, -0.115632), V7 = c(-0.030692, 
0.120837, 0.132596, 0.093722, -0.0746, -0.02964)), .Names = c("V2", 
"V3", "V4", "V5", "V6", "V7"), row.names = 132:137, class = "data.frame") 
+0

謝謝你很多!我只是添加了ts()把它轉換成時間序列,它的工作原理非常好。 – nelakell

+0

樂意幫忙!不常見的問題,但有趣! –