我正在爲圖像增強培訓一個深度CNN,並且遇到了一個非常奇怪的問題。Tensorflow:保存/導入檢查點無錯誤地工作,但所有導入的變量都具有值'none'
我的網絡架構是完全卷積的,並實現了幾個小的「u形」組件,其中功能映射被下/上採樣以便在整個「頂層」中進行處理。在頂層,網絡有幾個節點「猜測」輸出圖像,然後將較低層的輸出添加到從猜測中導出的特徵。我對最終預測中的錯誤以及這些猜測都有所損失。
網絡正是如此定義:
def convnet(x, weights, biases):
#TOP LAYER
conv0_1 = conv3dWrap(x, weights['wConv0_1'], biases['bConv0_1'],[1,1,1,1,1])
conv0_2 = conv3dWrap(conv0_1, weights['wConv0_2'], biases['bConv0_2'],[1,1,1,1,1])
#MID LAYER DOWN SAMPLE
conv1_1 = conv3dWrap(conv0_2, weights['wConv1_1'], biases['bConv1_1'],[1,2,2,2,1])
conv1_2 = conv3dWrap(conv1_1, weights['wConv1_2'], biases['bConv1_2'],[1,1,1,1,1])
#BOTTOM LAYER DOWN SAMPLE
conv2_1 = conv3dWrap(conv1_2, weights['wConv2_1'], biases['bConv2_1'],[1,2,2,2,1])
conv2_2 = conv3dWrap(conv2_1, weights['wConv2_2'], biases['bConv2_2'],[1,1,1,1,1])
conv2_3 = conv3dWrap(conv2_2, weights['wConv2_3'], biases['bConv2_3'],[1,1,1,1,1])
convTrans2_1 = conv3dTransWrap(conv2_3,weights['wTConv2_1'], biases['bTConv2_1'], [4,2,32,32,64],[1,2,2,2,1])
#MID LAYER UPSAMPLE
conv1_3 = conv3dWrap(tf.add(convTrans2_1,conv1_2),weights['wConv1_3'], biases['bConv1_3'],[1,1,1,1,1])
conv1_4 = conv3dWrap(conv1_3, weights['wConv1_4'], biases['bConv1_4'],[1,1,1,1,1])
convTrans1_1 = conv3dTransWrap(conv1_4, weights['wTConv1_1'], biases['bTConv1_1'], [4,4,64,64,32],[1,2,2,2,1])
#TOP LAYER AGAIN
conv0_3 = conv3dWrap(tf.add(conv0_2,convTrans1_1), weights['wConv0_3'], biases['bConv0_3'],[1,1,1,1,1])
conv0_4 = conv3dWrap(conv0_3, weights['wConv0_4'], biases['bConv0_4'],[1,1,1,1,1])
recon0_1 = reconWrap(conv0_3, weights['wReconDS0_1'], biases['bReconDS0_1'],[1,1,1,1,1])
print(recon0_1.shape)
catRecon0_1 = tf.add(conv0_4,tf.contrib.keras.backend.repeat_elements(recon0_1,32,4))
conv0_5 = conv3dWrap(catRecon0_1, weights['wConv0_5'], biases['bConv0_5'],[1,1,1,1,1])
#MID LAYER AGAIN
conv1_5 = conv3dWrap(conv0_5, weights['wConv1_5'], biases['bConv1_5'],[1,2,2,2,1])
conv1_6 = conv3dWrap(conv1_5, weights['wConv1_6'], biases['bConv1_6'],[1,1,1,1,1])
#BOTTOM LAYER
conv2_4 = conv3dWrap(conv1_6, weights['wConv2_4'], biases['bConv2_4'],[1,2,2,2,1])
conv2_5 = conv3dWrap(conv2_4, weights['wConv2_5'], biases['bConv2_5'],[1,1,1,1,1])
conv2_6 = conv3dWrap(conv2_5, weights['wConv2_6'], biases['bConv2_6'],[1,1,1,1,1])
convTrans2_2 = conv3dTransWrap(conv2_6,weights['wTConv2_2'], biases['bTConv2_2'], [4,2,32,32,64],[1,2,2,2,1])
#MID LAYER UPSAMPLE
conv1_7 = conv3dWrap(tf.add(convTrans2_2,conv1_6),weights['wConv1_7'], biases['bConv1_7'],[1,1,1,1,1])
conv1_8 = conv3dWrap(conv1_7, weights['wConv1_8'], biases['bConv1_8'],[1,1,1,1,1])
convTrans1_2 = conv3dTransWrap(conv1_8,weights['wTConv1_2'], biases['bTConv1_2'], [4,4,64,64,32],[1,2,2,2,1])
#TOP LAYER
conv0_6 = conv3dWrap(tf.add(conv0_5,convTrans1_2), weights['wConv0_6'], biases['bConv0_6'],[1,1,1,1,1])
recon0_2 = reconWrap(conv0_6, weights['wReconDS0_2'], biases['bReconDS0_2'],[1,1,1,1,1])
catRecon0_2 = tf.add(conv0_6,tf.contrib.keras.backend.repeat_elements(recon0_2,32,4))
conv0_7 = conv3dWrap(catRecon0_2, weights['wConv0_7'], biases['bConv0_7'],[1,1,1,1,1])
#MID LAYER
conv1_9 = conv3dWrap(conv0_7, weights['wConv1_9'], biases['bConv1_9'],[1,2,2,2,1])
conv1_10 = conv3dWrap(conv1_9, weights['wConv1_10'], biases['bConv1_10'],[1,1,1,1,1])
#BOTTOM LAYER
conv2_7 = conv3dWrap(conv1_10, weights['wConv2_7'], biases['bConv2_7'],[1,2,2,2,1])
conv2_8 = conv3dWrap(conv2_7, weights['wConv2_8'], biases['bConv2_8'],[1,1,1,1,1])
conv2_9 = conv3dWrap(conv2_8, weights['wConv2_9'], biases['bConv2_9'],[1,1,1,1,1])
convTrans2_3 = conv3dTransWrap(conv2_9, weights['wTConv2_3'], biases['bTConv2_3'], [4,2,32,32,64],[1,2,2,2,1])
#MID LAYER UPSAMPLE
conv1_11 = conv3dWrap(tf.add(convTrans2_3,conv1_10),weights['wConv1_11'], biases['bConv1_11'],[1,1,1,1,1])
conv1_12 = conv3dWrap(conv1_11, weights['wConv1_12'], biases['bConv1_12'],[1,1,1,1,1])
convTrans1_3 = conv3dTransWrap(conv1_12,weights['wTConv1_3'], biases['bTConv1_3'], [4,4,64,64,32],[1,2,2,2,1])
#TOP LAYER
conv0_8 = conv3dWrap(tf.add(conv0_7,convTrans1_3), weights['wConv0_8'], biases['bConv0_8'],[1,1,1,1,1])
recon0_3 = reconWrap(conv0_8, weights['wReconDS0_3'], biases['bReconDS0_3'],[1,1,1,1,1])
catRecon0_3 = tf.add(conv0_8,tf.contrib.keras.backend.repeat_elements(recon0_3,32,4))
conv0_9 = conv3dWrap(catRecon0_3, weights['wConv0_9'], biases['bConv0_9'],[1,1,1,1,1])
print(recon0_3.shape)
#MID LAYER
conv1_13 = conv3dWrap(conv0_9, weights['wConv1_13'], biases['bConv1_13'],[1,2,2,2,1])
conv1_14 = conv3dWrap(conv1_13, weights['wConv1_14'], biases['bConv1_14'],[1,1,1,1,1])
#BOTTOM LAYER
conv2_10 = conv3dWrap(conv1_14, weights['wConv2_10'], biases['bConv2_10'],[1,2,2,2,1])
conv2_11 = conv3dWrap(conv2_10, weights['wConv2_11'], biases['bConv2_11'],[1,1,1,1,1])
conv2_12 = conv3dWrap(conv2_11, weights['wConv2_12'], biases['bConv2_12'],[1,1,1,1,1])
convTrans2_4 = conv3dTransWrap(conv2_12, weights['wTConv2_4'], biases['bTConv2_4'], [4,2,32,32,64],[1,2,2,2,1])
#MID LAYER UPSAMPLE
conv1_15 = conv3dWrap(tf.add(convTrans2_4,conv1_14),weights['wConv1_15'], biases['bConv1_15'],[1,1,1,1,1])
conv1_16 = conv3dWrap(conv1_15, weights['wConv1_16'], biases['bConv1_16'],[1,1,1,1,1])
convTrans1_4 = conv3dTransWrap(conv1_16,weights['wTConv1_4'], biases['bTConv1_4'], [4,4,64,64,32],[1,2,2,2,1])
#TOP LAYER
conv0_10 = conv3dWrap(tf.add(conv0_9,convTrans1_4), weights['wConv0_10'], biases['bConv0_10'],[1,1,1,1,1])
#OUTPUT
convOUT = reconWrap(conv0_10, weights['wConvOUT'], biases['bConvOUT'],[1,1,1,1,1])
print(convOUT.shape)
return recon0_1, recon0_2, recon0_3, convOUT
都到哪裏去「包裝」,如下所示:
def conv3dWrap(x, W, b, strides):
x = tf.nn.conv3d(x, W, strides, padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def reconWrap(x, W, b, strides):
x = tf.nn.conv3d(x, W, strides, padding='SAME')
x = tf.nn.bias_add(x, b)
return x
def conv3dTransWrap(x, W, b, shape, strides):
x = tf.nn.conv3d_transpose(x, W, shape, strides, padding='SAME')
x = tf.nn.bias_add(x,b)
return tf.nn.relu(x)
我的重量和偏見都存儲在字典開始之前的訓練中定義的:
weights={
#TOP LAYER
'wConv0_1': tf.Variable(tf.random_normal([4, 3, 3, 1, 5]), name='wC0_1'),
'wConv0_2': tf.Variable(tf.random_normal([4, 3, 3, 5, 32]), name='wC0_2'),
'wConv0_3': tf.Variable(tf.random_normal([4, 3, 3, 32, 32]), name='wC0_3'),
'wConv0_4': tf.Variable(tf.random_normal([4, 3, 3, 32, 32]), name='wC0_4'),
'wReconDS0_1': tf.Variable(tf.random_normal([1, 1, 1, 32, 1]) , name='wR0_1') ...... #THIS CONTINUES FOR QUITE AWHILE
然後,我開始像這樣的訓練:
def train_cnn(x):
epochLosses=[]
print('Beginning Training!')
print(NUM_EPOCHS)
r1,r2,r3,pred = convNet(x, weights, biases)
cost = (tf.losses.mean_squared_error(y,pred)
+ 0.25* ((tf.losses.mean_squared_error(y,r1))
+ (tf.losses.mean_squared_error(y,r2))
+ (tf.losses.mean_squared_error(y,r3))))
regularizer= 0.01*tf.nn.l2_loss((weights['wConv0_1'])+
0.01*tf.nn.l2_loss(weights['wConv0_2'])+
0.01*tf.nn.l2_loss(weights['wConv0_3'])+
0.01*tf.nn.l2_loss(weights['wConv0_4'])+
0.01*tf.nn.l2_loss(weights['wReconDS0_1'])+
0.01*tf.nn.l2_loss(weights['wConv0_5'])+
0.01*tf.nn.l2_loss(weights['wConv0_6'])+
0.01*tf.nn.l2_loss(weights['wReconDS0_2'])+
0.01*tf.nn.l2_loss(weights['wReconDS0_3'])+
0.01*tf.nn.l2_loss(weights['wConv0_7'])+
0.01*tf.nn.l2_loss(weights['wConv0_8'])+
0.01*tf.nn.l2_loss(weights['wConv0_9'])+
0.01*tf.nn.l2_loss(weights['wConv0_10'])+
0.01*tf.nn.l2_loss(weights['wConvOUT'])+
0.01*tf.nn.l2_loss(weights['wConv1_1'])+
0.01*tf.nn.l2_loss(weights['wConv1_2'])+
0.01*tf.nn.l2_loss(weights['wConv1_3'])+
0.01*tf.nn.l2_loss(weights['wConv1_4'])+
0.01*tf.nn.l2_loss(weights['wConv1_5'])+
0.01*tf.nn.l2_loss(weights['wConv1_6'])+
0.01*tf.nn.l2_loss(weights['wConv1_7'])+
0.01*tf.nn.l2_loss(weights['wConv1_8'])+
0.01*tf.nn.l2_loss(weights['wConv1_9'])+
0.01*tf.nn.l2_loss(weights['wConv1_10'])+
0.01*tf.nn.l2_loss(weights['wConv1_11'])+
0.01*tf.nn.l2_loss(weights['wConv1_12'])+
0.01*tf.nn.l2_loss(weights['wConv1_13'])+
0.01*tf.nn.l2_loss(weights['wConv1_14'])+
0.01*tf.nn.l2_loss(weights['wConv1_15'])+
0.01*tf.nn.l2_loss(weights['wConv1_16'])+
0.01*tf.nn.l2_loss(weights['wTConv1_1'])+
0.01*tf.nn.l2_loss(weights['wTConv1_2'])+
0.01*tf.nn.l2_loss(weights['wTConv1_3'])+
0.01*tf.nn.l2_loss(weights['wTConv1_4'])+
0.01*tf.nn.l2_loss(weights['wConv2_1'])+
0.01*tf.nn.l2_loss(weights['wConv2_2'])+
0.01*tf.nn.l2_loss(weights['wConv2_3'])+
0.01*tf.nn.l2_loss(weights['wConv2_4'])+
0.01*tf.nn.l2_loss(weights['wConv2_5'])+
0.01*tf.nn.l2_loss(weights['wConv2_6'])+
0.01*tf.nn.l2_loss(weights['wConv2_7'])+
0.01*tf.nn.l2_loss(weights['wConv2_8'])+
0.01*tf.nn.l2_loss(weights['wConv2_9'])+
0.01*tf.nn.l2_loss(weights['wConv2_10'])+
0.01*tf.nn.l2_loss(weights['wConv2_11'])+
0.01*tf.nn.l2_loss(weights['wConv2_12'])+
0.01*tf.nn.l2_loss(weights['wTConv2_1'])+
0.01*tf.nn.l2_loss(weights['wTConv2_2'])+
0.01*tf.nn.l2_loss(weights['wTConv2_3'])+
0.01*tf.nn.l2_loss(weights['wTConv2_4']))
cost=cost+regularizer
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(cost)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
valLosses=[]
epochLosses=[]
print('Beginning Session!')
writer = tf.summary.FileWriter ('./GRAPH' , sess.graph)
sess.run(tf.global_variables_initializer())
最後,我繼續做一些加載批量的東西,一旦他們準備好了,我做下面的事情(對於每次傳球,我都不會每次傳球都進行保存重引進工作):
_, c = sess.run([optimizer, cost], feed_dict = {x: inBatch,y: gsBatch})
epoch_loss += c
save_path = saver.save(sess, "./CHKPT/model.cpkt")
所以,當我繼續前進,導入此模型
sess = tf.Session()
x = tf.placeholder(dtype=tf.float32)
new_saver = tf.train.import_meta_graph('./CHKPT/model.cpkt.meta')
sess.run(tf.global_variables_initializer())
a,b,c,pred = convNet(x, weights, biases)
我遇到了以下錯誤:
ValueError: Tried to convert 'filter' to a tensor and failed. Error: None values not supported.
當我查看導入的權重和偏見時,他們每個人的值都是'無'。這不僅很奇怪,而且在訓練期間網絡'非常快速'運行,比我預期的要快得多。我擔心沒有發生合法的計算。
這肯定不是這樣,但是,我幾乎肯定我正在按照我用於許多其他網絡的保存/加載過程逐字。任何人都可以點亮這裏可能發生的事情嗎?
編輯:我對TF也很新,很可能在我的代碼中存在非理想因素。如果您在保存/導入之外看到任何不潔淨的東西,請告訴我。
我剛剛在加載代碼中刪除了初始化程序調用,問題保持不變。 – Karl
@Karl你也跳過了模型的恢復。我編輯了答案。 – BlueSun
我剛剛添加了這個,我仍然有同樣的問題。 我認爲問題在於培訓和/或保存。當我看重量和偏見我進口,它們實際上是 '無' 價值: 權重 出[40]: { 'wConv0_1':無, 'wConv0_10':無, 'wConv0_2' :無, 'wConv0_3':無, 'wConv0_4':無, 'wConv0_5':無, 'wConv0_6':無, 'wConv0_7':無, – Karl