我已經制作了基於科爾曼的紅黑樹實現,但是我必須打破一些東西,因爲它不能像它應該那樣工作。我相信我正確地重寫了Cormen,但是我不知道什麼是錯誤的,那麼......我怎麼知道......我拿了10個值並檢查樹應該如何看(http://secs.ceas.uc.edu/~franco /C321/html/RedBlack/redblack.html)和我的看起來不一樣。因此,我請善意提出任何可以幫助我找出問題的提示,整個代碼很長,但如果沒有它,我不能重現錯誤,對此感到抱歉。我相信犯有插入後旋轉和/或修正...紅黑樹 - 預訂中的印花樹
編輯:新的代碼,但它還是引起了紅色和黑色的,甚至侵犯雖然我可以發誓,我只是改寫了僞代碼,以C++ ...
#include <cstdio>
#include <algorithm>
#include <string>
enum rbt_color { RED, BLACK };
struct rbt_node
{
int key; //klucz
int sub_tree; //wielkość poddrzewa
std::string data; //wartość (napis do 21 znaków)
rbt_node *left; //lewy syn
rbt_node *right; //prawy syn
rbt_node *parent;
rbt_color color; //kolor
};
int is_RED(rbt_node *root)
{
return root != NULL && root->color == RED;
}
int is_BLACK(rbt_node *root)
{
return root != NULL && root->color == BLACK;
}
rbt_node *make_node(int key, std::string data)
{
rbt_node *new_node = new rbt_node;
new_node->key = key;
new_node->data = data;
new_node->color = RED;
new_node->left = NULL;
new_node->right = NULL;
new_node->sub_tree = 1; //inicjalna wartość
return new_node;
}
void add_node(rbt_node *&tree, rbt_node *node, rbt_node *parent)
{
if(tree == NULL)
{
node->parent = parent;
tree = node;
}
else if(node->key < tree->key)
{
tree->sub_tree += 1;
add_node(tree->left, node, tree);
}
else if(node->key > tree->key)
{
tree->sub_tree += 1;
add_node(tree->right, node, tree);
}
}
//funkcja testująca drzewo, źródło http://www.eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx (trochę ulepszyłem)
int rbt_assert (rbt_node *root)
{
int lh, rh;
if (root == NULL)
return 1;
else {
rbt_node *ln = root->left;
rbt_node *rn = root->right;
/* Consecutive RED links */
if (is_RED (root)) {
if (is_RED (ln) || is_RED (rn)) {
puts ("RED violation");
printf("VIOLATION AT KEY: %d\n", root->key);
//return 0;
}
}
lh = rbt_assert (ln);
rh = rbt_assert (rn);
if (1 + (ln ? ln->sub_tree : 0) + (rn ? rn->sub_tree : 0) != root->sub_tree)
{
puts ("Subtree violation");
printf("VIOLATION AT KEY: %d\n", root->key);
return 0;
}
if (root->left != NULL && root->left->parent != root || root->right != NULL && root->right->parent != root)
{
puts ("Parent violation");
printf("VIOLATION AT KEY: %d\n", root->key);
return 0;
}
/* Invalid binary search tree */
if ((ln != NULL && ln->key >= root->key)
|| (rn != NULL && rn->key <= root->key))
{
puts ("Binary tree violation");
return 0;
}
/* BLACK height mismatch */
if (lh != 0 && rh != 0 && lh != rh) {
puts ("BLACK violation");
return 0;
}
/* Only count BLACK links */
if (lh != 0 && rh != 0)
return is_RED (root) ? lh : lh + 1;
else
return 0;
}
}
void left_rotate(rbt_node *&root, rbt_node *&node)
{
rbt_node *new_node = node->right;
if(new_node != NULL)
{
node->right = new_node->left;
if(new_node->left != NULL)
new_node->left->parent = node;
if(node->parent == NULL)
root = new_node;
else if(node == node->parent->left)
node->parent->left = new_node;
else
node->parent->right = new_node;
new_node->left = node;
//aktualizujemy rozmiar poddrzewa
new_node->sub_tree = node->sub_tree;
node->sub_tree = 1;
if(node->left != NULL)
node->sub_tree += node->left->sub_tree;
if(node->right != NULL)
node->sub_tree += node->right->sub_tree;
new_node->parent = node->parent;
new_node->left->parent = new_node;
}
}
void right_rotate(rbt_node *&root, rbt_node *& node)
{
rbt_node *new_node = node->left;
if(new_node != NULL)
{
node->left = new_node->right;
if(new_node->right != NULL)
new_node->right->parent = node;
if(node->parent == NULL)
root = new_node;
else if(node == node->parent->right)
node->parent->right = new_node;
else
node->parent->left = new_node;
new_node->right = node;
//aktualizujemy rozmiar poddrzewa
new_node->sub_tree = node->sub_tree;
node->sub_tree = 1;
if(node->left != NULL)
node->sub_tree += node->left->sub_tree;
if(node->right != NULL)
node->sub_tree += node->right->sub_tree;
new_node->parent = node->parent;
new_node->right->parent = new_node;
}
}
void add_rbt_node(rbt_node *&root, int key, std::string data, rbt_node *parent)
{
rbt_node *element = make_node(key, data);
add_node(root, element, parent);
while(element != root && element->parent->color == RED)
{
if(element->parent == element->parent->parent->left)
{
rbt_node *uncle = element->parent->parent->right;
if(uncle != NULL && uncle->color == RED)
{
element->parent->color == BLACK;
uncle->color = BLACK;
element->parent->parent->color = RED;
element = element->parent->parent;
}
else
{
if(element == element->parent->right)
{
element = element->parent;
left_rotate(root, element);
}
element->parent->color = BLACK;
element->parent->parent->color = RED;
right_rotate(root, element->parent->parent);
}
}
else
{
rbt_node *uncle = element->parent->parent->left;
if(uncle != NULL && uncle->color == RED)
{
element->parent->color = BLACK;
uncle->color = BLACK;
element->parent->parent->color = RED;
element = element->parent->parent;
}
else
{
if(element == element->parent->left)
{
element = element->parent;
right_rotate(root, element);
}
element->parent->color = BLACK;
element->parent->parent->color = RED;
left_rotate(root, element->parent->parent);
}
}
}
root->color = BLACK;
}
void search_key(rbt_node *root, int key)
{
if(root == NULL)
printf("-\n");
else if(root->key == key)
printf("%s\n", root->data.c_str());
else if(root->key < key)
search_key(root->right, key);
else if(root->key > key)
search_key(root->left, key);
}
void min_key(rbt_node *root, int number)
{
if(root != NULL)
{
int rank = 1;
if(root->left != NULL)
rank += root->left->sub_tree;
if(rank == number)
printf("%s\n", root->data.c_str());
else if(number < rank)
min_key(root->left, number);
else
min_key(root->right, number - rank);
}
}
void print_out(rbt_node *root)
{
if(root != NULL)
{
printf("%d %s ", root->key, root->data.c_str());
if(root->color == BLACK)
printf("black ");
else
printf("red ");
if(root->parent != NULL)
printf("%d ",root->parent->key);
else
printf("- ");
if(root->left != NULL)
printf("%d ",root->left->key);
else
printf("- ");
if(root->right != NULL)
printf("%d ",root->right->key);
else
printf("- ");
printf("\n");
print_out(root->left);
if(root->right != NULL)
{
print_out(root->right);
}
}
}
int main()
{
int key;
char data [21];
char operation;
rbt_node *root = NULL;
while(scanf("%c",&operation) != EOF)
{
switch(operation)
{
case 'I':
scanf("%d",&key);
scanf("%s",data);
add_rbt_node(root, key, data, NULL);
break;
case 'S':
scanf("%d",&key);
search_key(root, key);
break;
case 'F':
scanf("%d",&key);
if(key <= root->sub_tree && key != 0)
min_key(root, key);
else
printf("-\n");
break;
case 'G':
printf("%d\n", rbt_assert(root));
break;
case 'P':
//print_out(root);
break;
}
}
}
定義「不適合應用」。 – 2011-05-06 14:34:37
插入的順序會影響樹的最終形狀,您需要驗證的是所有不變量都是有效的:樹按順序排列(從給定節點開始,所有離開的子節點都小於當前節點,並且所有正確的孩子都會更大),必須保持顏色不變性,樹應該平衡。另外,如果這是家庭作業,則將其標記爲這樣。 – 2011-05-06 14:51:43
不工作就像它應該=命令是不同的比樹中的例子我在網站上寫過+我錯過了一些節點(父母的指針似乎是錯誤的)。正如我所說,我明白RBT的規則,但並不完全理解Cormen的代碼,所以我想編寫代碼,看看它是如何通過示例工作的,但是,我做了錯誤的事情。我會修復自己的代碼,如果我知道它是如何工作的,但一遍又一遍地調試並不能讓我知道該怎麼做... – mishe 2011-05-06 15:02:22