0
我正在嘗試編寫一個程序,根據日誌實用程序和同時發生的相關事件來計算最佳下注量。未知numpy.optimize.fmin錯誤
爲了做到這一點,我試圖使用numpy.optimize.fmin
函數。該功能anon
,我傳遞給它的工作原理和生產(希望)正確的輸出,但是當numpy
試圖優化我收到以下錯誤功能
s[i].append(f[i][0]*w[i][0] + f[i][1]*w[i][1])
IndexError: invalid index to scalar variable.
因爲我不知道有關fmin
,我不知道是什麼導致這個錯誤。
我的代碼在下面,希望不是tl;博士,但我不會責怪你。
附錄
def main():
p = [[0.1,0.1,0.2, 0.2,0.1,0, 0.1,0.1,0.1]]
w = [[5,4]]
MaxLU(p,w,True)
def MaxLU(p, w, Push = False, maxIter = 10):
#Maximises LU, using Scipy in built function
if Push == True:
anon = lambda f: -PushLogUtility(p, w, f)
else:
anon = lambda f: -LogUtility(p, w, f)
#We use multiple random starts
f = []
LU = []
for i in range(0,maxIter):
start = np.random.rand(len(p))
start = start/5 * np.sum(start)
f.append(optimize.fmin(anon, start)) #Error occurs in here!
if Push == True:
LU.append(PushLogUtility(p, w, f[-1]))
else:
LU.append(LogUtility(p, w, f[-1]))
#Now find the index of the max LU and return that same index of f
return f[LU.index(np.max(LU))]
def PushLogUtility(p,w,f):
#Outputs log utility incoroporating pushes and dependent totals, money data
#p : 9xk length vector of joint probabilities for each of the k games, p = [[p_(W_T W_M), p_(W_T P_M), p_(W_T L_M), p_(P_T W_M) ... ]]
#w : 2xk matrix of odds where w = [[total odds, money odds] ... ]
#f : 2xk matrix of bankroll percentages to bet, f = [[f_T, f_M] ... ]
utility = 0
k = len(p)
s = k*[[]]
for i in range(0,k):
s[i].append(f[i][0]*w[i][0] + f[i][1]*w[i][1])
s[i].append(f[i][0]*w[i][0])
s[i].append(f[i][0]*w[i][0] - f[i][1])
s[i].append(f[i][1]*w[i][1])
s[i].append(0)
s[i].append(-f[i][1])
s[i].append(-f[i][0] - f[i][1])
s[i].append(-f[i][0] - f[i][1])
s[i].append(-f[i][0] - f[i][1])
for i in range(0,9 ** k):
l = de2ni(i) #Converts number to base 9
if i == 0:
l += int(math.ceil(k - 1 - math.log(i + 1,9))) * [0]
else:
l += int(math.ceil(k - 1 - math.log(i,9))) * [0]
productTerm = np.prod([p[i][l[i]] for i in range(0,k)])
sumTerm = np.sum([s[i][l[i]] for i in range(0,k)])
utility = utility + productTerm * np.log(1 + sumTerm)
return utility
感謝您的回覆,您是如何設法研究這些類型的?調試時我無法進入'scipy.optimize.fmin'。 – rwolst
如果你在實際功能上使用調試器......或者在這種情況下,你甚至可以使用可怕的''print''調試 –
好吧,我想我需要理解函數內部到底是怎麼回事的問題。我最初傳遞的'f'是一個2D列表,但是似乎優化在每次迭代時都返回一個1D列表,因此'f [i]'不能再次索引。 – rwolst