更新:現在包括處理數據樣本,並使用MPL日期的功能。
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter, MinuteLocator, SecondLocator
import numpy as np
from StringIO import StringIO
import datetime as dt
### The example data
a=StringIO("""a 10:15:22 10:15:30 OK
b 10:15:23 10:15:28 OK
c 10:16:00 10:17:10 FAILED
b 10:16:30 10:16:50 OK
""")
#Converts str into a datetime object.
conv = lambda s: dt.datetime.strptime(s, '%H:%M:%S')
#Use numpy to read the data in.
data = np.genfromtxt(a, converters={1: conv, 2: conv},
names=['caption', 'start', 'stop', 'state'], dtype=None)
cap, start, stop = data['caption'], data['start'], data['stop']
#Check the status, because we paint all lines with the same color
#together
is_ok = (data['state'] == 'OK')
not_ok = np.logical_not(is_ok)
#Get unique captions and there indices and the inverse mapping
captions, unique_idx, caption_inv = np.unique(cap, 1, 1)
#Build y values from the number of unique captions.
y = (caption_inv + 1)/float(len(captions) + 1)
#Plot function
def timelines(y, xstart, xstop, color='b'):
"""Plot timelines at y from xstart to xstop with given color."""
plt.hlines(y, xstart, xstop, color, lw=4)
plt.vlines(xstart, y+0.03, y-0.03, color, lw=2)
plt.vlines(xstop, y+0.03, y-0.03, color, lw=2)
#Plot ok tl black
timelines(y[is_ok], start[is_ok], stop[is_ok], 'k')
#Plot fail tl red
timelines(y[not_ok], start[not_ok], stop[not_ok], 'r')
#Setup the plot
ax = plt.gca()
ax.xaxis_date()
myFmt = DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(myFmt)
ax.xaxis.set_major_locator(SecondLocator(interval=20)) # used to be SecondLocator(0, interval=20)
#To adjust the xlimits a timedelta is needed.
delta = (stop.max() - start.min())/10
plt.yticks(y[unique_idx], captions)
plt.ylim(0,1)
plt.xlim(start.min()-delta, stop.max()+delta)
plt.xlabel('Time')
plt.show()
謝謝。我已經成功使用您的解決方案繪製圖形作爲基礎。如果沒有人提出更好的解決方案,會接受你的答案。 – dm3
我更新我的回答,我一直想學的matplotlibs日期功能。 – tillsten
對於不同的結束符號,用分散符號替換vlines。 plt.scatter(xstart,y,s = 100,c = color,marker ='x',lw = 2,edgecolor = color) – tillsten