0
我目前正在嘗試使用PREDICT SIGNATURE導出TF文本模型。我有_Decode從傳入的測試文章字符串中返回結果,然後將其傳遞給buildTensorInfo。這實際上是一個返回的字符串。當爲TensorFlow導出textsum模型時,獲取錯誤'str'對象沒有屬性'dtype'服務
現在,當我運行textsum_export.py邏輯來導出模型時,它會到達構建TensorInfo對象的位置,但是出現以下跟蹤錯誤。我知道PREDICT簽名通常與圖像一起使用。這是問題嗎?我可以不使用這個Textsum模型,因爲我正在使用字符串?
錯誤是:
Traceback (most recent call last):
File "export_textsum.py", line 129, in Export
tensor_info_outputs = tf.saved_model.utils.build_tensor_info(res)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/saved_model/utils_impl.py", line 37, in build_tensor_info
dtype_enum = dtypes.as_dtype(tensor.dtype).as_datatype_enum
AttributeError: 'str' object has no attribute 'dtype'
其中該模型導出的TF會話是下面:
with tf.Session(config = config) as sess:
# Restore variables from training checkpoints.
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
res = decoder._Decode(saver, sess)
print("Decoder value {}".format(type(res)))
else:
print('No checkpoint file found at %s' % FLAGS.checkpoint_dir)
return
# Export model
export_path = os.path.join(FLAGS.export_dir,str(FLAGS.export_version))
print('Exporting trained model to %s' % export_path)
#-------------------------------------------
tensor_info_inputs = tf.saved_model.utils.build_tensor_info(serialized_tf_example)
tensor_info_outputs = tf.saved_model.utils.build_tensor_info(res)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={ tf.saved_model.signature_constants.PREDICT_INPUTS: tensor_info_inputs},
outputs={tf.saved_model.signature_constants.PREDICT_OUTPUTS:tensor_info_outputs},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
))
#----------------------------------
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder = saved_model_builder.SavedModelBuilder(export_path)
builder.add_meta_graph_and_variables(
sess=sess,
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
'predict':prediction_signature,
},
legacy_init_op=legacy_init_op)
builder.save()
print('Successfully exported model to %s' % export_path)
帶張量的預測簽名工作, res_tensor = tf.convert_to_tensor(res) –
Gaurav你真棒!這工作完美。我似乎無法將此評論設置爲答案,但您應該是獲得信用的人。如果您可以提供您的評論作爲答案,我會接受它。再次感謝! – xtr33me