0
在意大利千層麪的錯誤,我想基於theano /千層麪,將(基本上)嘗試做多變量回歸創造一個神經網絡。「ValueError異常:形狀不匹配」的神經網絡
代碼的肉:
train_value = train_df.values[:, 0]
train_data = train_df.values[:, 1:]
#print "train:", train_data.shape, train_label.shape
#test_data = test_df.values
#print "test:", test_data.shape
train_data = train_data.astype(np.float)
train_value = train_value.astype(np.int32)
fc_1hidden = NeuralNet(
layers = [ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden', layers.DenseLayer),
('dropout', layers.DropoutLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape = (None, 36), # 36 rows of data
hidden_num_units = 100, # number of units in hidden layer
dropout_p = 0.25, # dropout probability
output_nonlinearity = softmax, # output layer uses softmax function
output_num_units = 10, # 10 labels
# optimization method:
#update = nesterov_momentum,
update = sgd,
update_learning_rate = 0.001,
#update_momentum = 0.9,
eval_size = 0.1,
# batch_iterator_train = BatchIterator(batch_size = 20),
# batch_iterator_test = BatchIterator(batch_size = 20),
max_epochs = 100, # we want to train this many epochs
verbose = 1,
)
fc_1hidden.fit(train_data, train_value)
plot_loss(fc_1hidden)
這裏,train_value僅1(數值)列的數據,我想訓練我的神經網絡預測,下面57列(train_data)都應該適當加權的參數/值(所有數字)以預測第一列中的值。
然而,當我運行該腳本,我得到以下錯誤:
Epoch | Train loss | Valid loss | Train/Val | Valid acc | Dur
--------|--------------|--------------|---------------|-------------|-------
Traceback (most recent call last):
File "neuralnetwork.py", line 77, in <module>
fc_1hidden.fit(train_data, train_value)
File "/Users/spadavec/anaconda/lib/python2.7/site-packages/nolearn/lasagne.py", line 150, in fit
self.train_loop(X, y)
File "/Users/spadavec/anaconda/lib/python2.7/site-packages/nolearn/lasagne.py", line 188, in train_loop
batch_train_loss = self.train_iter_(Xb, yb)
File "/Users/spadavec/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py", line 606, in __call__
storage_map=self.fn.storage_map)
File "/Users/spadavec/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py", line 595, in __call__
outputs = self.fn()
ValueError: Shape mismatch: x has 83 cols (and 29 rows) but y has 36 rows (and 100 cols)
Apply node that caused the error: Dot22(x_batch, W)
Inputs types: [TensorType(float64, matrix), TensorType(float64, matrix)]
Inputs shapes: [(29, 83), (36, 100)]
Inputs strides: [(664, 8), (800, 8)]
Inputs values: ['not shown', 'not shown']
我不知道在那裏得到這個形狀 - 沒有我的數據有83列或行。 (注意:我試圖修改這個腳本,它原本是用來查看臉部圖片並猜測不同部位(眼睛,鼻子,嘴巴等)的位置)。
我已經寫在pybrain這個(沒有差法)的更簡單的版本,但我想遷移到sklearn /烤寬麪條/ theano因爲它會打開更多的門。
你看到了什麼,如果你'打印train_data.shape,只需調用之前train_value.shape''fit'? (只是爲了確認你提供的數據是你認爲自己的形狀) –