0
我想用張量流建立一個有2個輸出節點的迴歸模型。我搜索了一個可以建立迴歸模型但有1個輸出節點的代碼。如何使用張量流與系列輸出進行迴歸?
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/skflow/boston.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from sklearn import cross_validation
from sklearn import metrics
from sklearn import preprocessing
import tensorflow as tf
from tensorflow.contrib import learn
def main(unused_argv):
# Load dataset
boston = learn.datasets.load_dataset('boston')
x, y = boston.data, boston.target
# Split dataset into train/test
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
x, y, test_size=0.2, random_state=42)
# Scale data (training set) to 0 mean and unit standard deviation.
scaler = preprocessing.StandardScaler()
x_train = scaler.fit_transform(x_train)
# Build 2 layer fully connected DNN with 10, 10 units respectively.
feature_columns = learn.infer_real_valued_columns_from_input(x_train)
regressor = learn.DNNRegressor(
feature_columns=feature_columns, hidden_units=[10, 10])
# Fit
regressor.fit(x_train, y_train, steps=5000, batch_size=1)
# Predict and score
y_predicted = list(
regressor.predict(scaler.transform(x_test), as_iterable=True))
score = metrics.mean_squared_error(y_predicted, y_test)
print('MSE: {0:f}'.format(score))
if __name__ == '__main__':
tf.app.run()
我是新來tensorflow,所以我搜索了具有相似礦是如何工作的代碼,但是代碼的輸出是一個。
在我的模型中,輸入是N * 1000,輸出是N * 2。我想知道是否有有效和高效的迴歸代碼。請給我一些例子。
這是不是很清楚你的問題是什麼。你可以說得更詳細點嗎? – miraculixx