我建立了一個Spark集羣,所有節點都可以訪問網絡共享存儲,在這裏他們可以訪問要讀取的文件。我在一個python jupyter筆記本上運行它。它在幾天前工作,現在它停止工作,但我不知道爲什麼,或者我改變了什麼。Spark'FileNotFoundException:文件不存在'錯誤(python)
我已經嘗試重新啓動節點和主。
我也試着將csv文件複製到一個新的目錄並指向spark.read,但它仍然給出相同的錯誤。
當我刪除CSV文件,它提供了更短的錯誤說「找不到文件」
任何幫助將不勝感激。
這是我的代碼:
from pyspark.sql import SparkSession
from pyspark.conf import SparkConf
spark = SparkSession.builder \
.master("spark://IP:PORT") \
.appName("app_1") \
.config(conf=SparkConf()) \
.getOrCreate()
df = spark.read.csv("/nas/file123.csv")
string1 = df.rdd.map(lambda x: x.column1).collect()
不過,我得到這個錯誤:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-2-12bd938122cd> in <module>()
29
30
---> 31 string1 = df.rdd.map(lambda x: x.column1).collect()
32
33
/home/hjk/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/rdd.pyc in collect(self)
807 """
808 with SCCallSiteSync(self.context) as css:
--> 809 port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
810 return list(_load_from_socket(port, self._jrdd_deserializer))
811
/usr/local/lib/python2.7/dist-packages/py4j/java_gateway.pyc in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:
/home/hjk/Downloads/spark-2.1.0-bin-hadoop2.7/python/pyspark/sql/utils.pyc in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/local/lib/python2.7/dist-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling {0}{1}{2}.\n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 4 in stage 3.0 failed 4 times, most recent failure: Lost task 4.3 in stage 3.0 (TID 37, executor 2): java.io.FileNotFoundException: File file:/nas/file123.csv does not exist
It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:157)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.hasNext(SerDeUtil.scala:117)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.foreach(SerDeUtil.scala:112)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:504)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:328)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1951)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:269)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:935)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:934)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:453)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.FileNotFoundException: File file:/nas/file123.csv does not exist
It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:157)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.hasNext(SerDeUtil.scala:117)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at org.apache.spark.api.python.SerDeUtil$AutoBatchedPickler.foreach(SerDeUtil.scala:112)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:504)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:328)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1951)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:269)
你試過提供文件:如果您使用的是NAS的位置。請嘗試。默認情況下,它將嘗試從HDFS獲取文件 –
提供輸入的絕對路徑 –