0
我使用k-means算法進行聚類,但我不確定如何根據結果決定k的最佳最佳值。 對於離,我已經申請k均值上對於k = 10的數據集:決定weka中k-means算法的最佳'k'
kMeans
======
Number of iterations: 16
Within cluster sum of squared errors: 38.47923197081721
Missing values globally replaced with mean/mode
Cluster centroids:
Cluster#
Attribute Full Data 0 1 2 3 4 5 6 7 8 9
(214) (16) (9) (13) (23) (46) (12) (11) (40) (15) (29)
==============================================================================================================================================================================================================================================================
RI 1.5184 1.5181 1.5175 1.5189 1.5178 1.5172 1.519 1.5255 1.5175 1.5222 1.5171
Na 13.4079 12.9988 14.6467 12.8277 13.2148 13.1896 13.63 12.6318 13.0518 13.9107 14.4421
Mg 2.6845 3.4894 1.3056 0.7738 3.4261 3.4987 3.4917 0.2145 3.4958 3.8273 0.5383
Al 1.4449 1.1844 1.3667 2.0338 1.3552 1.4898 1.3308 1.1891 1.2617 0.716 2.1228
Si 72.6509 72.785 73.2067 72.3662 72.6526 72.6989 72.07 72.0709 72.9532 71.7467 72.9659
K 0.4971 0.4794 0 1.47 0.527 0.59 0.4108 0.2345 0.547 0.1007 0.3252
Ca 8.957 8.8069 9.3567 10.1238 8.5648 8.3041 8.87 13.1291 8.5035 9.5887 8.4914
Ba 0.175 0.015 0 0.1877 0.023 0.003 0.0667 0.2864 0 0 1.04
Fe 0.057 0.2238 0 0.0608 0.2013 0.0104 0.0167 0.1109 0.011 0.0313 0.0134
Type build wind non-float build wind float tableware containers build wind non-float build wind non-float build wind float build wind non-float build wind float build wind float headlamps
非常有用.... – Aquarius24