2
我有一個數據幀稱爲input
,看起來像下面這樣:的R - 回收NA值以前的非NA值
structure(list(sequence = c("LdBPK_010012800.1", "MAQNDKIAPQDQDSF",
"AQNDKIAPQDQDSFL", "QNDKIAPQDQDSFLD", "NDKIAPQDQDSFLDD", "DKIAPQDQDSFLDDQ",
"KIAPQDQDSFLDDQP", "IAPQDQDSFLDDQPG", "APQDQDSFLDDQPGV", "PQDQDSFLDDQPGVR",
"LdBPK_020009000.1", "MAQNDKIAPQDQDSF", "AQNDKIAPQDQDSFL", "QNDKIAPQDQDSFLD",
"NDKIAPQDQDSFLDD", "DKIAPQDQDSFLDDQ", "KIAPQDQDSFLDDQP", "IAPQDQDSFLDDQPG",
"APQDQDSFLDDQPGV", "PQDQDSFLDDQPGVR"), score = c(1, 17007, 12388,
15984, 23405, 31897, 26826, 35239, 35361, 36486, 1, 17007, 12388,
15984, 23405, 31897, 26826, 35239, 35361, 36486), epitope = structure(c(1L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L), .Label = c("", "Epitope", "Non-Epitope"), class = "factor"),
positioning = c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), accessions = c("LdBPK_010012800.1",
NA, NA, NA, NA, NA, NA, NA, NA, NA, "LdBPK_020009000.1",
NA, NA, NA, NA, NA, NA, NA, NA, NA)), row.names = c(NA, -20L
), .Names = c("sequence", "score", "epitope", "positioning",
"accessions"), class = "data.frame")
(其實我的原始數據幀有超過100萬行,所以這只是它的一小部分)
我想input$accessions
下回收非NA的值(與LdBPK_010012800.1開始),直到我發現下一個非NA值(考慮本示例中,LdBPK_020009000.1)。然後我將回收低於LdBPK_020009000.1的NA值,直到遇到下一個非NA值,依此類推。
此操作後,我的新的數據幀應該是這樣的:
structure(list(sequence = c("LdBPK_010012800.1", "MAQNDKIAPQDQDSF",
"AQNDKIAPQDQDSFL", "QNDKIAPQDQDSFLD", "NDKIAPQDQDSFLDD", "DKIAPQDQDSFLDDQ",
"KIAPQDQDSFLDDQP", "IAPQDQDSFLDDQPG", "APQDQDSFLDDQPGV", "PQDQDSFLDDQPGVR",
"LdBPK_020009000.1", "MAQNDKIAPQDQDSF", "AQNDKIAPQDQDSFL", "QNDKIAPQDQDSFLD",
"NDKIAPQDQDSFLDD", "DKIAPQDQDSFLDDQ", "KIAPQDQDSFLDDQP", "IAPQDQDSFLDDQPG",
"APQDQDSFLDDQPGV", "PQDQDSFLDDQPGVR"), score = c(1, 17007, 12388,
15984, 23405, 31897, 26826, 35239, 35361, 36486, 1, 17007, 12388,
15984, 23405, 31897, 26826, 35239, 35361, 36486), epitope = structure(c(1L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L), .Label = c("", "Epitope", "Non-Epitope"), class = "factor"),
positioning = c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE), accessions = c("LdBPK_010012800.1",
"LdBPK_010012800.1", "LdBPK_010012800.1", "LdBPK_010012800.1",
"LdBPK_010012800.1", "LdBPK_010012800.1", "LdBPK_010012800.1",
"LdBPK_010012800.1", "LdBPK_010012800.1", "LdBPK_010012800.1",
"LdBPK_020009000.1", "LdBPK_020009000.1", "LdBPK_020009000.1",
"LdBPK_020009000.1", "LdBPK_020009000.1", "LdBPK_020009000.1",
"LdBPK_020009000.1", "LdBPK_020009000.1", "LdBPK_020009000.1",
"LdBPK_020009000.1")), row.names = c(NA, -20L), .Names = c("sequence",
"score", "epitope", "positioning", "accessions"), class = "data.frame")
我這樣做,因爲我的最終目標是通過accessions
使用dplyr
分組和score