2017-03-16 86 views
4

我提取我的代碼的某些部分可能是相關的,我遇到的問題:ValueError異常:參數必須是一個密集的張量 - Python和TensorFlow

from PIL import Image 
import tensorflow as tf 

data = Image.open('1-enhanced.png') 
... 
... 
raw_data = data 
raw_img = raw_data 

我得到下面的長消息,我不知道如何分析(你對這裏發生了什麼有什麼想法):

Traceback (most recent call last): 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 490, in apply_op 
    preferred_dtype=default_dtype) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 669, in convert_to_tensor 
    ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 176, in _constant_tensor_conversion_function 
    return constant(v, dtype=dtype, name=name) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 165, in constant 
    tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 376, in make_tensor_proto 
    _GetDenseDimensions(values))) 
ValueError: Argument must be a dense tensor: <PIL.PngImagePlugin.PngImageFile image mode=L size=150x150 at 0x1E07D3C0AC8> - got shape [150, 150], but wanted []. 

During handling of the above exception, another exception occurred: 

Traceback (most recent call last): 
    File "conv_visuals.py", line 54, in <module> 
    x = tf.reshape(raw_data, shape=[-1,150,150,1]) 
    File "C:\Python35\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 2448, in reshape 
    name=name) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 503, in apply_op 
    as_ref=input_arg.is_ref).dtype.name 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 669, in convert_to_tensor 
    ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 176, in _constant_tensor_conversion_function 
    return constant(v, dtype=dtype, name=name) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 165, in constant 
    tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape)) 
    File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 376, in make_tensor_proto 
    _GetDenseDimensions(values))) 
ValueError: Argument must be a dense tensor: <PIL.PngImagePlugin.PngImageFile image mode=L size=150x150 at 0x1E07D3C0AC8> - got shape [150, 150], but wanted []. 

謝謝。

+2

只是一個猜測:將其轉換爲numpy的數組:'numpy.asarray (Image.open( '1-enhanced.png')。將( 'L'))'。然後嘗試解決它? – Dair

+0

非常感謝您的評論。是的,我認爲這消除了錯誤。雖然我有另一個錯誤,但似乎與此無關。 – Simplicity

回答

3

只是發表評論,因爲它似乎已經解決了這個問題:

嘗試將其轉換爲numpy的數組:

numpy.asarray(Image.open('1-enhanced.png').convert('L')) 
相關問題