當傳遞fit
x,y
,我收到以下錯誤:ValueError異常:類的數量必須大於一個(蟒蛇)更大
回溯(最近通話最後一個):
File "C:/Classify/classifier.py", line 95, in
train_avg, test_avg, cms = train_model(X, y, "ceps", plot=True)
File "C:/Classify/classifier.py", line 47, in train_modelclf.fit(X_train, y_train) File "C:\Python27\lib\site-packages\sklearn\svm\base.py", line 676, in fit raise ValueError("The number of classes has to be greater than" ValueError: The number of classes has to be greater than one.
以下是我的代碼:
def train_model(X, Y, name, plot=False):
"""
train_model(vector, vector, name[, plot=False])
Trains and saves model to disk.
"""
labels = np.unique(Y)
cv = ShuffleSplit(n=len(X), n_iter=1, test_size=0.3, indices=True, random_state=0)
train_errors = []
test_errors = []
scores = []
pr_scores = defaultdict(list)
precisions, recalls, thresholds = defaultdict(list), defaultdict(list), defaultdict(list)
roc_scores = defaultdict(list)
tprs = defaultdict(list)
fprs = defaultdict(list)
clfs = [] # for the median
cms = []
for train, test in cv:
X_train, y_train = X[train], Y[train]
X_test, y_test = X[test], Y[test]
clf = LogisticRegression()
clf.fit(X_train, y_train)
clfs.append(clf)
scikit學習版本0.15.2 –