2
我有這個功能,從ycopin - GitHub修改。在Python中反轉座標軸方向
#!/usr/bin/env python
# Copyright: This document has been placed in the public domain.
"""
Taylor diagram (Taylor, 2001) test implementation.
http://www-pcmdi.llnl.gov/about/staff/Taylor/CV/Taylor_diagram_primer.htm
"""
__version__ = "Time-stamp: <2012-02-17 20:59:35 ycopin>"
__author__ = "Yannick Copin <[email protected]>"
import numpy as NP
import matplotlib.pyplot as PLT
class TaylorDiagram(object):
"""Taylor diagram: plot model standard deviation and correlation
to reference (data) sample in a single-quadrant polar plot, with
r=stddev and theta=arccos(correlation).
"""
def __init__(self, refstd, fig=None, rect=111, label='_'):
"""Set up Taylor diagram axes, i.e. single quadrant polar
plot, using mpl_toolkits.axisartist.floating_axes. refstd is
the reference standard deviation to be compared to.
"""
from matplotlib.projections import PolarAxes
import mpl_toolkits.axisartist.floating_axes as FA
import mpl_toolkits.axisartist.grid_finder as GF
self.refstd = refstd # Reference standard deviation
tr = PolarAxes.PolarTransform()
# Correlation positive labels
rlocs = NP.concatenate(([-0.99,-0.9],NP.arange(-0.8,0,0.2),
NP.arange(0,0.9,0.2),[0.9,0.99]))
tlocs = NP.arccos(rlocs) # Conversion to polar angles
gl1 = GF.FixedLocator(tlocs) # Positions
tf1 = GF.DictFormatter(dict(zip(tlocs, map(str,rlocs))))
# Standard deviation axis extent
self.smin = 0
self.smax = 2*self.refstd/self.refstd
ghelper = FA.GridHelperCurveLinear(tr,
extremes=(0,NP.pi, # 1st quadrant
self.smin,self.smax),
grid_locator1=gl1,
tick_formatter1=tf1,
)
if fig is None:
fig = PLT.figure()
ax = FA.FloatingSubplot(fig, rect, grid_helper=ghelper)
fig.add_subplot(ax)
# Adjust axes
ax.axis["top"].set_axis_direction("bottom") # "Angle axis"
ax.axis["top"].toggle(ticklabels=True, label=True)
ax.axis["top"].major_ticklabels.set_axis_direction("top")
ax.axis["top"].label.set_axis_direction("top")
ax.axis["top"].label.set_text("Correlation")
ax.axis["left"].set_axis_direction("right") # "X axis"
ax.axis["right"].toggle(ticklabels=True)
ax.axis["right"].major_ticklabels.set_axis_direction("bottom")
#ax.axis["bottom"].label.set_text("Standard deviation")
ax.axis["right"].set_axis_direction("left") # "Y axis"
#ax.axis["right"].toggle(ticklabels=True)
ax.axis["right"].major_ticklabels.set_axis_direction("right")
ax.axis["bottom"].set_visible(False) # Useless
# Contours along standard deviations
ax.grid(False)
self._ax = ax # Graphical axes
self.ax = ax.get_aux_axes(tr) # Polar coordinates
# Add reference point and stddev contour
print "Reference std:", self.refstd/self.refstd
l, = self.ax.plot([0], self.refstd/self.refstd, 'k*',
ls='', ms=10, label=label)
t = NP.linspace(0, NP.pi)
r = NP.zeros_like(t) + self.refstd/self.refstd
self.ax.plot(t,r, 'k--', label='_')
# Collect sample points for latter use (e.g. legend)
self.samplePoints = [l]
def add_sample(self, stddev, corrcoef, *args, **kwargs):
"""Add sample (stddev,corrcoeff) to the Taylor diagram. args
and kwargs are directly propagated to the Figure.plot
command."""
l, = self.ax.plot(NP.arccos(corrcoef), stddev/self.refstd,
*args, **kwargs) # (theta,radius)
self.samplePoints.append(l)
return l
def add_contours(self, levels=5, **kwargs):
"""Add constant centered RMS difference contours."""
rs,ts = NP.meshgrid(NP.linspace(self.smin,self.smax),
NP.linspace(0,NP.pi))
# Compute centered RMS difference
rms = NP.sqrt((self.refstd/self.refstd)**2 + rs**2 - 2*(self.refstd/self.refstd)*rs*NP.cos(ts))
contours = self.ax.contour(ts, rs, rms, levels, **kwargs)
return contours
if __name__=='__main__':
# Reference dataset
x = NP.linspace(0,4*NP.pi,100)
data = NP.sin(x)
refstd = data.std(ddof=1) # Reference standard deviation
# Models
m1 = data + 0.2*NP.random.randn(len(x)) # Model 1
m2 = 0.8*data + .1*NP.random.randn(len(x)) # Model 2
m3 = NP.sin(x-NP.pi/10) # Model 3
# Compute stddev and correlation coefficient of models
samples = NP.array([ [m.std(ddof=1), NP.corrcoef(data, m)[0,1]]
for m in (m1,m2,m3)])
fig = PLT.figure(figsize=(10,4))
ax1 = fig.add_subplot(1,2,1, xlabel='X', ylabel='Y')
# Taylor diagram
dia = TaylorDiagram(refstd, fig=fig, rect=122, label="Reference")
colors = PLT.matplotlib.cm.jet(NP.linspace(0,1,len(samples)))
ax1.plot(x,data,'ko', label='Data')
for i,m in enumerate([m1,m2,m3]):
ax1.plot(x,m, c=colors[i], label='Model %d' % (i+1))
ax1.legend(numpoints=1, prop=dict(size='small'), loc='best')
# Add samples to Taylor diagram
for i,(stddev,corrcoef) in enumerate(samples):
dia.add_sample(stddev, corrcoef, marker='s', ls='', c=colors[i],
label="Model %d" % (i+1))
# Add RMS contours, and label them
contours = dia.add_contours(colors='0.5')
PLT.clabel(contours, inline=1, fontsize=10)
# Add a figure legend
fig.legend(dia.samplePoints,
[ p.get_label() for p in dia.samplePoints ],
numpoints=1, prop=dict(size='small'), loc='upper right')
PLT.show()
當它運行時,它顯示了這個FIG1
我要的是減少數量的X,Y(極軸)滴答......也許五(5,包括參考數據),並將它們水平對齊。任何想法?
編輯:從上圖中這個
減少蜱數量
我不明白你想達到什麼目的。你可以把你想要的樣子描述爲另一種方式嗎? –
看我的編輯......這就是我想要的 – Erincon