3
我有一個從我遇到的特定異常派生的一般問題。如何避免火花NumberFormatException:null
我使用spark 1.6查詢dataproc的數據。我需要從2個日誌中獲取1天的數據(〜10000個文件),然後進行一些轉換。
但是,我的數據可能(或可能不會)有一些不良的數據 在一整天的查詢沒有成功後,我嘗試了00-09小時,沒有發生錯誤。嘗試了10-19小時,並得到一個例外。一小時一小時地嘗試,發現不好的數據是小時:10。小時圖11和12都很好
基本上我的代碼是:
val imps = sqlContext.read.format("com.databricks.spark.csv").option("header", "false").option("inferSchema", "true").load("gs://logs.xxxx.com/2016/03/14/xxxxx/imps/2016-03-14-10*").select("C0","C18","C7","C9","C33","C29","C63").registerTempTable("imps")
val conv = sqlContext.read.format("com.databricks.spark.csv").option("header", "false").option("inferSchema", "true").load("gs://logs.xxxx.com/2016/03/14/xxxxx/conv/2016-03-14-10*").select("C0","C18","C7","C9","C33","C29","C65").registerTempTable("conversions")
val ff = sqlContext.sql("select * from (select * from imps) A inner join (select * from conversions) B on A.C0=B.C0 and A.C7=B.C7 and A.C18=B.C18 ").coalesce(16).write.format("com.databricks.spark.csv").save("gs://xxxx-spark-results/newSparkResults/Plara2.6Mar14_10_1/")
{過 - 簡化}
我得到的錯誤是:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 38 in stage 130.0 failed 4 times, most recent failure: Lost task 38.3 in stage 130.0 (TID 88495, plara26-0317-0001-sw-v8oc.c.xxxxx-analytics.internal): java.lang.NumberFormatException: null
at java.lang.Integer.parseInt(Integer.java:542)
at java.lang.Integer.parseInt(Integer.java:615)
at scala.collection.immutable.StringLike$class.toInt(StringLike.scala:229)
at scala.collection.immutable.StringOps.toInt(StringOps.scala:31)
at com.databricks.spark.csv.util.TypeCast$.castTo(TypeCast.scala:53)
at com.databricks.spark.csv.CsvRelation$$anonfun$buildScan$6.apply(CsvRelation.scala:181)
at com.databricks.spark.csv.CsvRelation$$anonfun$buildScan$6.apply(CsvRelation.scala:162)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:511)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:686)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
所以我的問題是 - 如何實現異常處理使用spark-csv? 我可以將數據幀轉換爲RDD並在其中工作,但似乎必須有更好的方法.....
任何人都解決了類似的問題?
更新:在更改選項以將模式推斷爲false後,我已能夠獲取我的數據。這種方式字段被讀爲字符串,轉換爲Int當然是不必要的。 我仍然在尋找一個強大的解決方案來捕捉異常..... –