3
我承擔斯卡拉星火的coursera課程,我試圖優化這個片段與ReduceByKey洗牌:避免在星火
val indexedMeansG = vectors.
map(v => findClosest(v, means) -> v).
groupByKey.mapValues(averageVectors)
vectors
是RDD[(Int, Int)]
,爲了看的依賴列表和RDD的血統我用:
println(s"""GroupBy:
| Deps: ${indexedMeansG.dependencies.size}
| Deps: ${indexedMeansG.dependencies}
| Lineage: ${indexedMeansG.toDebugString}""".stripMargin)
這都說明這一點:
/* GroupBy:
* Deps: 1
* Deps: List([email protected])
* Lineage: (6) MapPartitionsRDD[18] at mapValues at StackOverflow.scala:207 []
* ShuffledRDD[17] at groupByKey at StackOverflow.scala:207 []
* +-(6) MapPartitionsRDD[16] at map at StackOverflow.scala:206 []
* MapPartitionsRDD[13] at map at StackOverflow.scala:139 []
* CachedPartitions: 6; MemorySize: 84.0 MB; ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
* MapPartitionsRDD[12] at values at StackOverflow.scala:116 []
* MapPartitionsRDD[11] at mapValues at StackOverflow.scala:115 []
* MapPartitionsRDD[10] at groupByKey at StackOverflow.scala:92 []
* MapPartitionsRDD[9] at join at StackOverflow.scala:91 []
* MapPartitionsRDD[8] at join at StackOverflow.scala:91 []
* CoGroupedRDD[7] at join at StackOverflow.scala:91 []
* +-(6) MapPartitionsRDD[4] at map at StackOverflow.scala:88 []
* | MapPartitionsRDD[3] at filter at StackOverflow.scala:88 []
* | MapPartitionsRDD[2] at map at StackOverflow.scala:69 []
* | src/main/resources/stackoverflow/stackoverflow.csv MapPartitionsRDD[1] at textFile at StackOverflow.scala:23 []
* | src/main/resources/stackoverflow/stackoverflow.csv HadoopRDD[0] at textFile at StackOverflow.scala:23 []
* +-(6) MapPartitionsRDD[6] at map at StackOverflow.scala:89 []
* MapPartitionsRDD[5] at filter at StackOverflow.scala:89 []
* MapPartitionsRDD[2] at map at StackOverflow.scala:69 []
* src/main/resources/stackoverflow/stackoverflow.csv MapPartitionsRDD[1] at textFile at StackOverflow.scala:23 []
* src/main/resources/stackoverflow/stackoverflow.csv HadoopRDD[0] at textFile at StackOverflow.scala:23 [] */
從這個List([email protected])
我推斷沒有洗牌正在完成,對嗎?但是,低於ShuffledRDD[17]
被打印,這意味着實際上有洗牌。
我已經試過了reduceByKey
以取代groupByKey
呼叫,像這樣:
val indexedMeansR = vectors.
map(v => findClosest(v, means) -> v).
reduceByKey((a, b) => (a._1 + b._1)/2 -> (a._2 + b._2)/2)
和它的依賴和血統是:
/* ReduceBy:
* Deps: 1
* Deps: List([email protected])
* Lineage: (6) ShuffledRDD[17] at reduceByKey at StackOverflow.scala:211 []
* +-(6) MapPartitionsRDD[16] at map at StackOverflow.scala:210 []
* MapPartitionsRDD[13] at map at StackOverflow.scala:139 []
* CachedPartitions: 6; MemorySize: 84.0 MB; ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
* MapPartitionsRDD[12] at values at StackOverflow.scala:116 []
* MapPartitionsRDD[11] at mapValues at StackOverflow.scala:115 []
* MapPartitionsRDD[10] at groupByKey at StackOverflow.scala:92 []
* MapPartitionsRDD[9] at join at StackOverflow.scala:91 []
* MapPartitionsRDD[8] at join at StackOverflow.scala:91 []
* CoGroupedRDD[7] at join at StackOverflow.scala:91 []
* +-(6) MapPartitionsRDD[4] at map at StackOverflow.scala:88 []
* | MapPartitionsRDD[3] at filter at StackOverflow.scala:88 []
* | MapPartitionsRDD[2] at map at StackOverflow.scala:69 []
* | src/main/resources/stackoverflow/stackoverflow.csv MapPartitionsRDD[1] at textFile at StackOverflow.scala:23 []
* | src/main/resources/stackoverflow/stackoverflow.csv HadoopRDD[0] at textFile at StackOverflow.scala:23 []
* +-(6) MapPartitionsRDD[6] at map at StackOverflow.scala:89 []
* MapPartitionsRDD[5] at filter at StackOverflow.scala:89 []
* MapPartitionsRDD[2] at map at StackOverflow.scala:69 []
* src/main/resources/stackoverflow/stackoverflow.csv MapPartitionsRDD[1] at textFile at StackOverflow.scala:23 []
* src/main/resources/stackoverflow/stackoverflow.csv HadoopRDD[0] at textFile at StackOverflow.scala:23 [] */
這一次,相關性是ShuffleDependency
和我我無法理解爲什麼。
由於RDD是一對鍵是整數,因此具有的排序,我還試圖修改的分割器和使用RangePartitioner
,但它並不能改善或者
但是相應地,對於依賴關係的輸出,groupByKey有一個OneToOneDependency,它不涉及混洗,reduceByKey具有ShuffleDependency,涉及混洗。爲什麼? – elbaulp
'OneToOneDependency'對應於'mapValues'調用,而不是'groupByKey'調用。如果刪除了,你應該注意到'ShuffleDependency'。另外,請注意'groupByKey'血統中的'ShuffledRDD'。 –