2017-09-06 84 views
0

我正在嘗試從TFRecord文件讀取圖像和標籤,然後使用這些文件進行訓練。 我知道我的TFRecord文件存在,並檢查它確實包含1000個圖像和標籤。我的問題似乎只在我想將管道作爲輸入來訓練時出現。 我是新來的Python和張量流動,不知道如何解決這個問題訓練時發生Tensorflow錯誤:由操作'shuffle_batch'導致

我碰到下面的錯誤在tf.train.shuffle_batch

存在的...

通過運算引起的「shuffle_batch ',定義如下: 文件「C:/AI/projects/DataGen/train.py」,第40行,在 images_batch,labels_batch = tf.train.shuffle_batch([image,label],batch_size = 10,capacity = 1000 ,min_after_dequeue = 2)

...

這裏是我的代碼,從各種MNIST例子

import tensorflow as tf 


def read_and_decode_single_example(filename): 
    # first construct a queue containing a list of filenames. 
    # this lets a user split up there dataset in multiple files to keep 
    # size down 
    filename_queue = tf.train.string_input_producer([filename], 
               num_epochs=None) 
    # Unlike the TFRecordWriter, the TFRecordReader is symbolic 
    reader = tf.TFRecordReader() 
    # One can read a single serialized example from a filename 
    # serialized_example is a Tensor of type string. 
    _, serialized_example = reader.read(filename_queue) 
    # The serialized example is converted back to actual values. 
    # One needs to describe the format of the objects to be returned 

    feature = {'image': tf.FixedLenFeature([], tf.string), 
      'label': tf.FixedLenFeature([], tf.int64)} 

    features = tf.parse_single_example(serialized_example, features=feature) 

    # now return the converted data 
    label = tf.cast(features['label'], tf.float32) 
    image = tf.decode_raw(features['image'], tf.float32) 
    image = tf.reshape(image, [28, 28, 3]) 
    return label, image 


with tf.Session() as sess: 
    sess.run(tf.local_variables_initializer()) 
    sess.run(tf.global_variables_initializer()) 

    # get single examples 
    label, image = read_and_decode_single_example("train.tfrecords") 

    image = tf.cast(image, tf.float32)/255. 

    # groups examples into batches randomly 
    images_batch, labels_batch = tf.train.shuffle_batch([image, label], batch_size=10, capacity=1000, min_after_dequeue=2) 

    # The model is: 
    # 
    # Y = softmax(X * W + b) 
    #    X: matrix for rgb images of 28x28 pixels, flattened (there are 100 images in a mini-batch) 
    #    W: weight matrix with (28x28x3) lines and 10 columns 
    #    b: bias vector with 10 dimensions 
    #    +: add with broadcasting: adds the vector to each line of the matrix (numpy) 
    #    softmax(matrix) applies softmax on each line 
    #    softmax(line) applies an exp to each value then divides by the norm of the resulting line 
    #    Y: output matrix with 100 lines and 10 columns 

    # input X: 28x28x3 RGB images 
    X = images_batch 
    # correct answers will go here 
    Y_ = labels_batch 
    # weights W[28 * 28 * 3, 10] 
    W = tf.Variable(tf.zeros([28 * 28 * 3, 10])) 
    # biases b[10] 
    b = tf.Variable(tf.zeros([10])) 

    # flatten the images into a single line of pixels 
    # -1 in the shape definition means "the only possible dimension that will preserve the number of elements" 
    XX = tf.reshape(X, [-1, 28 * 28 * 3]) 

    # The model 
    Y = tf.nn.softmax(tf.matmul(XX, W) + b) 

    # loss function: cross-entropy = - sum(Y_i * log(Yi)) 
    #       Y: the computed output vector 
    #       Y_: the desired output vector 

    # cross-entropy 
    # log takes the log of each element, * multiplies the tensors element by element 
    # reduce_mean will add all the components in the tensor 
    # so here we end up with the total cross-entropy for all images in the batch 
    cross_entropy = -tf.reduce_mean(Y_ * tf.log(Y)) * 100.0 # normalized for batches of 100 images, 
    # *10 because "mean" included an unwanted division by 10 

    # accuracy of the trained model, between 0 (worst) and 1 (best) 
    correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(Y_, 1)) 
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

    # training, learning rate = 0.005 
    train_step = tf.train.GradientDescentOptimizer(0.005).minimize(cross_entropy) 

    coord = tf.train.Coordinator() 
    threads = tf.train.start_queue_runners(coord=coord) 

    for i in range(100 + 1): 
     print(i) 
     sess.run(train_step) 

    coord.request_stop() 

    # Wait for threads to stop 
    coord.join(threads) 
    sess.close() 

回答

1

我搬到了tf.train.start_queue_runners調用之前初始化,並且解決了模型之後,即問題的拼湊起來的設置

sess.run(tf.local_variables_initializer()) 
sess.run(tf.global_variables_initializer()) 
coord = tf.train.Coordinator() 
threads = tf.train.start_queue_runners(coord=coord)