2013-04-27 65 views

回答

3

如果它是一個UCHAR墊

/** 
* @param : input image 
* @hist : histogram 
* @nmin : total minimum pixels number 
* @nmax : total maximum pixels number 
* @channel : channel number 
* 
* ex : images with 1000 pixels, 50 equal to 5% of it 
*/ 
std::pair<size_t, size_t> get_quantile_uchar(cv::Mat &input, cv::MatND &hist, size_t nmin, size_t nmax, int channel) 
{ 
    int const hist_size = std::numeric_limits<uchar>::max() + 1; 
    float const hranges[2] = {0, 255}; 
    float const *ranges[] = {hranges}; 

    //compute and cumulate the histogram 
    cv::calcHist(&input, 1, &channel, cv::Mat(), hist, 1, &hist_size, ranges); 
    auto *hist_ptr = hist.ptr<float>(0); 
    for(size_t i = 1; i != hist_size; ++i){ 
     hist_ptr[i] += hist_ptr[i - 1]; 
    } 

    // get the new min/max 
    std::pair<size_t, size_t> min_max(0, hist_size - 1); 
    while(min_max.first != (hist_size - 1) && hist_ptr[min_max.first] <= nmin){ 
     ++min_max.first; // the corresponding histogram value is the current cell position 
    } 

    while(min_max.second > 0 && hist_ptr[min_max.second] > nmax){ 
     --min_max.second; // the corresponding histogram value is the current cell position 
    } 

    if (min_max.second < hist_size - 2) 
     ++min_max.second; 

    return min_max; 
} 

實施例中,如果有一個墊(100 * 100)在0〜255的值,就可以測量頂部 5%百分位數,最低爲3%百分位數這樣

auto const result = get_quantile(input, hist, input.total * 0.03, input.total * 0.95, 0); 

,如果它不是一個UCHAR墊,然後就可以進行排序要測量第一通道

/** 
* @brief generic algorithm for other channel types except of uchar 
* @param input the input image 
* @param output the output image 
* @param smin total number of minimum pixels 
* @param smax total number maximum pixels 
* @param channel the channel used to compute the histogram 
* 
* This algorithm only support uchar channel and float channel by now 
*/ 
template<typename T> 
std::pair<T, T> get_quantile(cv::Mat &input, size_t smin, size_t smax, int channel) 
{ 
    std::vector<float> temp_input = copy_to_one_dim_array_ch<float>(input, channel); 
    std::sort(std::begin(temp_input), std::end(temp_input)); 

    return std::pair<T, T>(temp_input[smin], temp_input[temp_input.size() - 1 - smax]); 
} 

接下來的問題是如何實現功能copy_to_one_dim_array_ch

/* 
* experimental version for cv::Mat, try to alleviate the problem 
* of code bloat.User should make sure the space of begin point to 
* have enough of spaces. 
*/ 
template<typename T, typename InputIter> 
void copy_to_one_dim_array_ch(cv::Mat const &src, InputIter begin, int channel) 
{ 
    int const channel_number = src.channels(); 
    if(channel_number <= channel || channel < 0){ 
     throw std::out_of_range("channel value is invalid\n" + std::string(__FUNCTION__) + 
           "\n" + std::string(__FILE__)); 
    } 

    for(int row = 0; row != src.rows; ++row){ 
     auto ptr = src.ptr<T>(row) + channel; 
     for(int col = 0; col != src.cols; ++col){ 
      *begin = *ptr; 
      ++begin; 
      ptr += channel_number; 
     } 
    } 
} 

template<typename T> 
std::vector<T> const copy_to_one_dim_array_ch(cv::Mat const &src, int channel) 
{ 
    std::vector<T> result(src.total()); 
    copy_to_one_dim_array_ch<T>(src, std::begin(result), channel); 

    return result; 
} 

某些功能需要C++ 11的支持,以及功能copy_to_one_dim_array_ch 不支持非字節的圖像

如果你想讓它變得更容易使用,你可以 1:將這些函數包裝在一個類中。
2:在uchar上應用完全專業化Mat Mat 3:將函數包裝在函數中