我開始使用Spark Dataframes,並且我需要能夠透視數據以創建具有多行的1列中的多列。在Scalding中有內置的功能,我相信python中的Pandas,但我找不到新的Spark Dataframe。如何轉動Spark DataFrame?
我認爲我可以編寫自定義的函數來完成這個任務,但我甚至不知道如何開始,特別是因爲我是Spark的新手。我有任何人知道如何做到這一點內置的功能或如何在Scala中寫入東西的建議,非常感謝。
我開始使用Spark Dataframes,並且我需要能夠透視數據以創建具有多行的1列中的多列。在Scalding中有內置的功能,我相信python中的Pandas,但我找不到新的Spark Dataframe。如何轉動Spark DataFrame?
我認爲我可以編寫自定義的函數來完成這個任務,但我甚至不知道如何開始,特別是因爲我是Spark的新手。我有任何人知道如何做到這一點內置的功能或如何在Scala中寫入東西的建議,非常感謝。
As mentioned作者:@user2000823 Spark從版本1.6開始提供pivot
函數。一般語法如下所示:使用nycflights13
df
.groupBy(grouping_columns)
.pivot(pivot_column, [values])
.agg(aggregate_expressions)
使用示例和csv
格式:
的Python:
from pyspark.sql.functions import avg
flights = (sqlContext
.read
.format("csv")
.options(inferSchema="true", header="true")
.load("flights.csv")
.na.drop())
flights.registerTempTable("flights")
sqlContext.cacheTable("flights")
gexprs = ("origin", "dest", "carrier")
aggexpr = avg("arr_delay")
flights.count()
## 336776
%timeit -n10 flights.groupBy(*gexprs).pivot("hour").agg(aggexpr).count()
## 10 loops, best of 3: 1.03 s per loop
斯卡拉:
val flights = sqlContext
.read
.format("csv")
.options(Map("inferSchema" -> "true", "header" -> "true"))
.load("flights.csv")
flights
.groupBy($"origin", $"dest", $"carrier")
.pivot("hour")
.agg(avg($"arr_delay"))
爪哇:
import static org.apache.spark.sql.functions.*;
import org.apache.spark.sql.*;
Dataset<Row> df = spark.read().format("csv")
.option("inferSchema", "true")
.option("header", "true")
.load("flights.csv");
df.groupBy(col("origin"), col("dest"), col("carrier"))
.pivot("hour")
.agg(avg(col("arr_delay")));
R/SparkR:
library(magrittr)
flights <- read.df("flights.csv", source="csv", header=TRUE, inferSchema=TRUE)
flights %>%
groupBy("origin", "dest", "carrier") %>%
pivot("hour") %>%
agg(avg(column("arr_delay")))
R/sparklyr
library(dplyr)
flights <- spark_read_csv(sc, "flights", "flights.csv")
avg.arr.delay <- function(gdf) {
expr <- invoke_static(
sc,
"org.apache.spark.sql.functions",
"avg",
"arr_delay"
)
gdf %>% invoke("agg", expr, list())
}
flights %>%
sdf_pivot(origin + dest + carrier ~ hour, fun.aggregate=avg.arr.delay)
實施例數據:
"year","month","day","dep_time","sched_dep_time","dep_delay","arr_time","sched_arr_time","arr_delay","carrier","flight","tailnum","origin","dest","air_time","distance","hour","minute","time_hour"
2013,1,1,517,515,2,830,819,11,"UA",1545,"N14228","EWR","IAH",227,1400,5,15,2013-01-01 05:00:00
2013,1,1,533,529,4,850,830,20,"UA",1714,"N24211","LGA","IAH",227,1416,5,29,2013-01-01 05:00:00
2013,1,1,542,540,2,923,850,33,"AA",1141,"N619AA","JFK","MIA",160,1089,5,40,2013-01-01 05:00:00
2013,1,1,544,545,-1,1004,1022,-18,"B6",725,"N804JB","JFK","BQN",183,1576,5,45,2013-01-01 05:00:00
2013,1,1,554,600,-6,812,837,-25,"DL",461,"N668DN","LGA","ATL",116,762,6,0,2013-01-01 06:00:00
2013,1,1,554,558,-4,740,728,12,"UA",1696,"N39463","EWR","ORD",150,719,5,58,2013-01-01 05:00:00
2013,1,1,555,600,-5,913,854,19,"B6",507,"N516JB","EWR","FLL",158,1065,6,0,2013-01-01 06:00:00
2013,1,1,557,600,-3,709,723,-14,"EV",5708,"N829AS","LGA","IAD",53,229,6,0,2013-01-01 06:00:00
2013,1,1,557,600,-3,838,846,-8,"B6",79,"N593JB","JFK","MCO",140,944,6,0,2013-01-01 06:00:00
2013,1,1,558,600,-2,753,745,8,"AA",301,"N3ALAA","LGA","ORD",138,733,6,0,2013-01-01 06:00:00
性能考慮:
一般來說樞轉是昂貴的操作。
,如果你可以嘗試提供values
列表:
vs = list(range(25))
%timeit -n10 flights.groupBy(*gexprs).pivot("hour", vs).agg(aggexpr).count()
## 10 loops, best of 3: 392 ms per loop
in some cases it proved to be beneficial到repartition
和/或預彙總數據
只有重塑,您可以使用first
:Pivot String column on Pyspark Dataframe
我通過編寫for循環來動態創建SQL查詢,從而克服了這個問題。說我有:
id tag value
1 US 50
1 UK 100
1 Can 125
2 US 75
2 UK 150
2 Can 175
,我想:
id US UK Can
1 50 100 125
2 75 150 175
我可以創建我想轉動,然後創建一個包含SQL查詢我需要一個字符串值的列表。
val countries = List("US", "UK", "Can")
val numCountries = countries.length - 1
var query = "select *, "
for (i <- 0 to numCountries-1) {
query += """case when tag = """" + countries(i) + """" then value else 0 end as """ + countries(i) + ", "
}
query += """case when tag = """" + countries.last + """" then value else 0 end as """ + countries.last + " from myTable"
myDataFrame.registerTempTable("myTable")
val myDF1 = sqlContext.sql(query)
我可以創建類似的查詢然後做聚合。這不是一個非常優雅的解決方案,但它可以工作,並且對於任何值列表都是靈活的,當您調用代碼時也可以作爲參數傳入。
我想重現你的例子,但我得到了一個「org.apache.spark.sql.AnalysisException:無法解析'US'給定輸入列id,標記,值」 – user299791
這與引號有關。如果您查看生成的文本字符串,您會得到'case when tag = US',因此Spark認爲它是列名而不是文本值。你真正想看到的是'case when tag ='US'''。我已經編輯了上述答案,以便正確設置引號。 –
但也如上所述,這是使用pivot命令的功能現在是Spark的本地功能。 –
我已經解決了使用dataframes下面的步驟類似的問題:
爲您的所有國家都列有「價值」的價值:
import org.apache.spark.sql.functions._
val countries = List("US", "UK", "Can")
val countryValue = udf{(countryToCheck: String, countryInRow: String, value: Long) =>
if(countryToCheck == countryInRow) value else 0
}
val countryFuncs = countries.map{country => (dataFrame: DataFrame) => dataFrame.withColumn(country, countryValue(lit(country), df("tag"), df("value"))) }
val dfWithCountries = Function.chain(countryFuncs)(df).drop("tag").drop("value")
你的數據框「dfWithCountries」會看像這樣:
+--+--+---+---+
|id|US| UK|Can|
+--+--+---+---+
| 1|50| 0| 0|
| 1| 0|100| 0|
| 1| 0| 0|125|
| 2|75| 0| 0|
| 2| 0|150| 0|
| 2| 0| 0|175|
+--+--+---+---+
現在你可以爲你想要的結果加在一起的所有值:
dfWithCountries.groupBy("id").sum(countries: _*).show
結果:
+--+-------+-------+--------+
|id|SUM(US)|SUM(UK)|SUM(Can)|
+--+-------+-------+--------+
| 1| 50| 100| 125|
| 2| 75| 150| 175|
+--+-------+-------+--------+
這並不是雖然很優雅的解決方案。我不得不創建一系列函數來添加所有列。另外,如果我有很多國家,我會將我的臨時數據集擴大到很多零。
一個數據透視操作符已被添加到Spark數據框API中,並且是Spark 1.6的一部分。詳情請參閱https://github.com/apache/spark/pull/7841。
最初我採用了Al M的解決方案。後來採取了同樣的想法,並重寫了這個功能作爲轉置功能。
此方法調換任何DF行到任何數據格式的列使用鍵和值的列
輸入CSV
id,tag,value
1,US,50a
1,UK,100
1,Can,125
2,US,75
2,UK,150
2,Can,175
輸出中
+--+---+---+---+
|id| UK| US|Can|
+--+---+---+---+
| 2|150| 75|175|
| 1|100|50a|125|
+--+---+---+---+
轉置方法:
def transpose(hc : HiveContext , df: DataFrame,compositeId: List[String], key: String, value: String) = {
val distinctCols = df.select(key).distinct.map { r => r(0) }.collect().toList
val rdd = df.map { row =>
(compositeId.collect { case id => row.getAs(id).asInstanceOf[Any] },
scala.collection.mutable.Map(row.getAs(key).asInstanceOf[Any] -> row.getAs(value).asInstanceOf[Any]))
}
val pairRdd = rdd.reduceByKey(_ ++ _)
val rowRdd = pairRdd.map(r => dynamicRow(r, distinctCols))
hc.createDataFrame(rowRdd, getSchema(df.schema, compositeId, (key, distinctCols)))
}
private def dynamicRow(r: (List[Any], scala.collection.mutable.Map[Any, Any]), colNames: List[Any]) = {
val cols = colNames.collect { case col => r._2.getOrElse(col.toString(), null) }
val array = r._1 ++ cols
Row(array: _*)
}
private def getSchema(srcSchema: StructType, idCols: List[String], distinctCols: (String, List[Any])): StructType = {
val idSchema = idCols.map { idCol => srcSchema.apply(idCol) }
val colSchema = srcSchema.apply(distinctCols._1)
val colsSchema = distinctCols._2.map { col => StructField(col.asInstanceOf[String], colSchema.dataType, colSchema.nullable) }
StructType(idSchema ++ colsSchema)
}
主要片段
import java.util.Date
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.StructField
...
...
def main(args: Array[String]): Unit = {
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val dfdata1 = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true")
.load("data.csv")
dfdata1.show()
val dfOutput = transpose(new HiveContext(sc), dfdata1, List("id"), "tag", "value")
dfOutput.show
}
此方法將行轉換爲列... – Jaigates
有簡單而優雅的解決方案。
scala> spark.sql("select * from k_tags limit 10").show()
+---------------+-------------+------+
| imsi| name| value|
+---------------+-------------+------+
|246021000000000| age| 37|
|246021000000000| gender|Female|
|246021000000000| arpu| 22|
|246021000000000| DeviceType| Phone|
|246021000000000|DataAllowance| 6GB|
+---------------+-------------+------+
scala> spark.sql("select * from k_tags limit 10").groupBy($"imsi").pivot("name").agg(min($"value")).show()
+---------------+-------------+----------+---+----+------+
| imsi|DataAllowance|DeviceType|age|arpu|gender|
+---------------+-------------+----------+---+----+------+
|246021000000000| 6GB| Phone| 37| 22|Female|
|246021000000001| 1GB| Phone| 72| 10| Male|
+---------------+-------------+----------+---+----+------+
看到這個[類似的問題](http://stackoverflow.com/questions/30260015/reshaping-pivoting-data-in-spark-rdd-and-or-spark-dataframes/)其中,I貼本地Spark方法,不需要提前知道列/類別名稱。 – patricksurry