2017-05-06 85 views
2

我是新來tensorflow和tflearn和得到這個錯誤,而訓練模型。InvalidArgumentError:您必須養活一個值佔位張量「INPUT_1/X」與D型浮動

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_1/X' with dtype float 
    [[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

這是我的偏好代碼。

X = np.array([i[0] for i in train]).reshape(-1, IMG_SIZE, IMG_SIZE, 1) 
Y = np.array([i[1] for i in train]) 

test_x = np.array([i[0] for i in test]).reshape(-1, IMG_SIZE, IMG_SIZE, 1) 
test_y = np.array([i[1] for i in test]) 

其中列車和測試是具有第一元件作爲圖像和作爲標籤第二元件numpy的陣列。我試圖通過這條線來適合我的模型。

model.fit({'input': X}, {'targets': Y}, n_epoch=5, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id=MODEL_NAME) 

這是我收到完整的錯誤:

InvalidArgumentError      Traceback (most recent call last) 
<ipython-input-34-cf830d06009d> in <module>() 
----> 1 model.fit({'input': X}, {'targets': Y}, n_epoch=5, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id=MODEL_NAME) 

/usr/local/lib/python2.7/dist-packages/tflearn/models/dnn.pyc in fit(self, X_inputs, Y_targets, n_epoch, validation_set, show_metric, batch_size, shuffle, snapshot_epoch, snapshot_step, excl_trainops, validation_batch_size, run_id, callbacks) 
    213       excl_trainops=excl_trainops, 
    214       run_id=run_id, 
--> 215       callbacks=callbacks) 
    216 
    217  def predict(self, X): 

/usr/local/lib/python2.7/dist-packages/tflearn/helpers/trainer.pyc in fit(self, feed_dicts, n_epoch, val_feed_dicts, show_metric, snapshot_step, snapshot_epoch, shuffle_all, dprep_dict, daug_dict, excl_trainops, run_id, callbacks) 
    331              (bool(self.best_checkpoint_path) | snapshot_epoch), 
    332              snapshot_step, 
--> 333              show_metric) 
    334 
    335        # Update training state 

/usr/local/lib/python2.7/dist-packages/tflearn/helpers/trainer.pyc in _train(self, training_step, snapshot_epoch, snapshot_step, show_metric) 
    772   tflearn.is_training(True, session=self.session) 
    773   _, train_summ_str = self.session.run([self.train, self.summ_op], 
--> 774            feed_batch) 
    775 
    776   # Retrieve loss value from summary string 

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata) 
    776  try: 
    777  result = self._run(None, fetches, feed_dict, options_ptr, 
--> 778       run_metadata_ptr) 
    779  if run_metadata: 
    780   proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) 

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata) 
    980  if final_fetches or final_targets: 
    981  results = self._do_run(handle, final_targets, final_fetches, 
--> 982        feed_dict_string, options, run_metadata) 
    983  else: 
    984  results = [] 

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata) 
    1030  if handle is None: 
    1031  return self._do_call(_run_fn, self._session, feed_dict, fetch_list, 
-> 1032       target_list, options, run_metadata) 
    1033  else: 
    1034  return self._do_call(_prun_fn, self._session, handle, feed_dict, 

/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args) 
    1050   except KeyError: 
    1051   pass 
-> 1052  raise type(e)(node_def, op, message) 
    1053 
    1054 def _extend_graph(self): 

InvalidArgumentError: You must feed a value for placeholder tensor 'input_1/X' with dtype float 
    [[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

Caused by op u'input_1/X', defined at: 
    File "<string>", line 1, in <module> 
    File "/usr/lib/python2.7/dist-packages/IPython/kernel/zmq/kernelapp.py", line 469, in main 
    app.start() 
    File "/usr/lib/python2.7/dist-packages/IPython/kernel/zmq/kernelapp.py", line 459, in start 
    ioloop.IOLoop.instance().start() 
    File "/usr/lib/python2.7/dist-packages/zmq/eventloop/ioloop.py", line 162, in start 
    super(ZMQIOLoop, self).start() 
    File "/usr/lib/python2.7/dist-packages/tornado/ioloop.py", line 887, in start 
    handler_func(fd_obj, events) 
    File "/usr/lib/python2.7/dist-packages/tornado/stack_context.py", line 275, in null_wrapper 
    return fn(*args, **kwargs) 
    File "/usr/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events 
    self._handle_recv() 
    File "/usr/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv 
    self._run_callback(callback, msg) 
    File "/usr/lib/python2.7/dist-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback 
    callback(*args, **kwargs) 
    File "/usr/lib/python2.7/dist-packages/tornado/stack_context.py", line 275, in null_wrapper 
    return fn(*args, **kwargs) 
    File "/usr/lib/python2.7/dist-packages/IPython/kernel/zmq/ipkernel.py", line 281, in dispatcher 
    return self.dispatch_shell(stream, msg) 
    File "/usr/lib/python2.7/dist-packages/IPython/kernel/zmq/ipkernel.py", line 245, in dispatch_shell 
    handler(stream, idents, msg) 
    File "/usr/lib/python2.7/dist-packages/IPython/kernel/zmq/ipkernel.py", line 389, in execute_request 
    shell.run_cell(code, store_history=store_history, silent=silent) 
    File "/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2741, in run_cell 
    interactivity=interactivity, compiler=compiler) 
    File "/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2827, in run_ast_nodes 
    if self.run_code(code): 
    File "/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.py", line 2883, in run_code 
    exec(code_obj, self.user_global_ns, self.user_ns) 
    File "<ipython-input-14-fe1453e052a7>", line 6, in <module> 
    convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input') 
    File "/usr/local/lib/python2.7/dist-packages/tflearn/layers/core.py", line 81, in input_data 
    placeholder = tf.placeholder(shape=shape, dtype=dtype, name="X") 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 1507, in placeholder 
    name=name) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 1997, in _placeholder 
    name=name) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 768, in apply_op 
    op_def=op_def) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2336, in create_op 
    original_op=self._default_original_op, op_def=op_def) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1228, in __init__ 
    self._traceback = _extract_stack() 

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'input_1/X' with dtype float 
    [[Node: input_1/X = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

回答

1

添加dtype=np.float64聲明類型爲浮動。

X = np.array([i[0] for i in train], dtype=np.float64).reshape(-1, IMG_SIZE, IMG_SIZE, 1) 
Y = np.array([i[1] for i in train], dtype=np.float64) 

test_x = np.array([i[0] for i in test], dtype=np.float64).reshape(-1, IMG_SIZE, IMG_SIZE, 1) 
test_y = np.array([i[1] for i in test], dtype=np.float64) 
相關問題