2015-01-17 71 views
1

我試圖解決GLPK中的問題,但它給了我這個味精「問題沒有原始可行解決方案」。下面你會找到該程序。給我錯誤的約束是「約束6」,但我不知道如何解決它。 TNX爲你們的幫助球員GLPK:沒有原始可行解決方案

param n, integer ; # nbr noeuds 
param l, integer ; # Number of periods 
param m, integer ; # nbr vehicle 
set N := 0..n ; # set of nodes (plans & customers) 
set Nc := 1..n ; 
set T := 0..l ; # set of periods 
set K := 1..m ; # vehicles 
set A := {i in N, j in N : i!=j}; #Set of Arcs 
# paramètres 
param u ; # unit produc. cost 
param f ; # fixed produc. cost 
param h{i in N},integer, >=0 ; # Holding cost 
param c {i in N, j in N},integer, >=0 ; # Transportation cost 
param C ; # Production capacity 
param Q ; # Vehicle capacity 
param L {i in N},integer, >=0 ; #Maximum or target inventory level at node i 
param I0 {i in N},integer, >=0 ; # initial inventory at node i period 0 
param d{i in N, t in T},integer, >=0 ; # demand 
param M{t in T} := min(C, sum {j in T, i in Nc:j>=t } d[i,j]); 
param Mx{i in Nc, t in T} := min(L[i], Q, sum {j in T:j>=t } d[i,j]); 
# variables 
var p{t in T}, >=0, integer ; # production qty 
var q{i in N, t in T}, >=0, integer ; # qty delivered 
var y{t in T}, binary ;# Setup for period t (1 if there is production at 
var x{i in N, j in N, t in T}, binary; # 1 if a vehicle travels directly from node i to j, 0 otherwise 
var I{i in N, t in T}, integer, >=0 ; # Inventory at node i, period t 
var z0{t in T}, integer, >=0; # the number of vehicles leaving the plant in period t 
var z {i in Nc, t in T}, binary; # 1 if customer i is visited in t, 0 otherwise 
var w {i in N, t in T}, integer, >=0 ;#load of vehicle before making a delivery 
# fonction objectif: mimiser les coûts 
minimize cost: sum{t in T:t>0} (u*p[t]+ f*y[t] +(sum{i in N} h[i]*I[i,t])+ 
(sum{ (i,j) in A} c[i,j]*x[i,j,t])) ; 


s.t. RInit{i in N}  : I0[i] = 0 ; 
# Constraint (2) 
s.t. R1{t in T:t>0}:I[0, t-1]+p[t]=sum{i in Nc}q[i,t]+I[0,t]; 
# Constraint (3) 
s.t. R2{i in Nc, t in T:t>0} : I[i,t-1] + q[i,t] = d[i,t] + I[i,t] ; 
# Constraint (4) 
s.t. R3{t in T:t>0} : p[t] <= M[t]*y[t] ; 
# Constraint (5) 
s.t.R4{t in T:t>0} : I[0,t] <= L[0]; 
# Constraint (6) 
s.t. R5{i in Nc, t in T:t>0} : I[i,t-1]+q[i,t] <= L[i]; 
# Constraint (7) 
s.t. R6{i in Nc, t in T:t>0} : q[i,t] <= Mx[i,t]*z[i,t]; 
# Constraint (8) 
s.t. R7{ i in Nc ,t in T:t>0}: (sum{j in N} x[j,i,t])=z[i,t]; 
# Constraint (9) 
s.t. R8{i in N, t in T: t>0 and i>0} :sum{j in N}x[j,i,t]+sum{j in N} x[i,j,t]= 2*z[i,t]; 
# Constraint (10) 
s.t. R9{t in T: t>0}: z0[t]<= m; 
#Constraint (11) 
s.t. R10{ t in T,(i,j) in A: t>0 and i>0}: w[i,t]-w[j,t]>=q[i,t]-Mx[i,t]*(1-x[i,j,t]); 
#Constraint (12) 
s.t. R11{i in Nc, t in T: t>0}:0 <= w[i,t] ; 
s.t. R12{i in Nc, t in T: t>0}: w[i,t] <= Q*z[i,t]; 
#Constraint (13) 
s.t. R13{i in N, t in T:t>0}: p[t] >=0; 
s.t. R14{i in N, t in T:t>0} : I[i,t] >=0; 
s.t. R15{i in N, t in T:t>0} : q[i,t] >=0; 
solve ; 
printf "\n\nTotal cost:%f\n", cost ; 
display Mx ; 
display M ; 
data; 
param n := 3; 
param l := 6 ; 
param m := 1 ; 
param u := 1 ; 
param f := 10 ; 
param C := 4; 
param Q := 5; 
param d : 0 1 2 3 4 5 6 := 
      0 0 0 0 0 0 0 0 
      1 0 5 6 7 8 9 10 
      2 0 6 7 8 9 10 11 
      3 0 6 7 8 9 10 12 ; 
param c : 0 1 2 3 := 
    0 0 0 0 0 
    1 5 6 7 8 
    2 6 7 8 9 
    3 6 7 8 9 ; 
param h := 
    0 4 
    1 5 
    2 6 
    3 6 ; 
param I0 := 
    0 0 
    1 0 
    2 0 
    3 0 ; 
param L := 
    0 0 
    1 1 
    2 2 
    3 3 ; 
end ; 

回答

0

我認爲問題在於你的參數化。

在約束3:

s.t. R2{i in Nc, t in T:t>0} : I[i,t-1] + q[i,t] = d[i,t] + I[i,t]; 

您可以設置I + Q等於參數d加一些東西。 D在5到12範圍內,所有變量都是正數。

在約束6:

s.t. R5{i in Nc, t in T:t>0} : I[i,t-1]+q[i,t] <= L[i]; 

您限制相同的I + Q是lesserequal剛剛取值範圍爲1至3。 所以I + Q必須大於d的參數L(5)和L(1)這是不可行的。

相關問題