2016-10-12 73 views
0

我目前正在使用基於Linux的HPC,它只使用SLURM提交作業,而HPC只允許作業運行12小時。不過,我可能需要連續運行24個工作一週,才能取得好成績。SLURM如何在另一項任務完成時qsub任務?

是否有辦法在完成後再次(自動)運行作業?

親切的問候

地址:

當任務完成後,將創建一個.out文件。換句話說,.out文件的數量將增加1.

當.out數增加時,是否可以重新執行作業?

#!/bin/bash 
#! 
#! Example SLURM job script for Darwin (Sandy Bridge, ConnectX3) 
#! Last updated: Sat Apr 18 13:05:53 BST 2015 
#! 

#!############################################################# 
#!#### Modify the options in this section as appropriate ###### 
#!############################################################# 

#! sbatch directives begin here ############################### 
#! Name of the job: 
#SBATCH -J Validation 
#! Which project should be charged: 
#SBATCH -A SOGA 
#! How many whole nodes should be allocated? 
#SBATCH --nodes=1 
#! How many (MPI) tasks will there be in total? (<= nodes*16) 
#SBATCH --ntasks=1 

#!SBATCH --mem=200 

#! How much wallclock time will be required? 
#SBATCH --time=12:00:00 
#SBATCH --mail-user=zl352 
#SBATCH --mail-type=ALL 
#! Uncomment this to prevent the job from being requeued (e.g. if 
#! interrupted by node failure or system downtime): 
##SBATCH --no-requeue 


#! Do not change: 
#SBATCH -p sandybridge 

#! sbatch directives end here (put any additional directives above this line) 

#! Notes: 
#! Charging is determined by core number*walltime. 
#! The --ntasks value refers to the number of tasks to be launched by SLURM only. This 
#! usually equates to the number of MPI tasks launched. Reduce this from nodes*16 if 
#! demanded by memory requirements, or if OMP_NUM_THREADS>1. 
#! Each task is allocated 1 core by default, and each core is allocated 3994MB. If this 
#! is insufficient, also specify --cpus-per-task and/or --mem (the latter specifies 
#! MB per node). 

#! Number of nodes and tasks per node allocated by SLURM (do not change): 
numnodes=$SLURM_JOB_NUM_NODES 
numtasks=$SLURM_NTASKS 
mpi_tasks_per_node=$(echo "$SLURM_TASKS_PER_NODE" | sed -e 's/^\([0-9][0-9]*\).*$/\1/') 
#! ############################################################ 
#! Modify the settings below to specify the application's environment, location 
#! and launch method: 

#! Optionally modify the environment seen by the application 
#! (note that SLURM reproduces the environment at submission irrespective of ~/.bashrc): 
. /etc/profile.d/modules.sh    # Leave this line (enables the module command) 
module purge        # Removes all modules still loaded 
module load default-impi     # REQUIRED - loads the basic environment 

#! Insert additional module load commands after this line if needed: 

#! Full path to application executable: 
application="~/scratch/code7/viv" 

#! Run options for the application: 
options=" > test.e" 

#! Work directory (i.e. where the job will run): 
workdir="$SLURM_SUBMIT_DIR" # The value of SLURM_SUBMIT_DIR sets workdir to the directory 
          # in which sbatch is run. 

#! Are you using OpenMP (NB this is unrelated to OpenMPI)? If so increase this 
#! safe value to no more than 16: 
export OMP_NUM_THREADS=1 

#! Number of MPI tasks to be started by the application per node and in total (do not change): 
np=$[${numnodes}*${mpi_tasks_per_node}] 

#! The following variables define a sensible pinning strategy for Intel MPI tasks - 
#! this should be suitable for both pure MPI and hybrid MPI/OpenMP jobs: 
export I_MPI_PIN_DOMAIN=omp:compact # Domains are $OMP_NUM_THREADS cores in size 
export I_MPI_PIN_ORDER=scatter # Adjacent domains have minimal sharing of caches/sockets 
#! Notes: 
#! 1. These variables influence Intel MPI only. 
#! 2. Domains are non-overlapping sets of cores which map 1-1 to MPI tasks. 
#! 3. I_MPI_PIN_PROCESSOR_LIST is ignored if I_MPI_PIN_DOMAIN is set. 
#! 4. If MPI tasks perform better when sharing caches/sockets, try I_MPI_PIN_ORDER=compact. 


#! Uncomment one choice for CMD below (add mpirun/mpiexec options if necessary): 

#! Choose this for a MPI code (possibly using OpenMP) using Intel MPI. 
#!CMD="mpirun -ppn $mpi_tasks_per_node -np $np $application $options" 

#! Choose this for a pure shared-memory OpenMP parallel program on a single node: 
#! (OMP_NUM_THREADS threads will be created): 
CMD="$application $options" 

#! Choose this for a MPI code (possibly using OpenMP) using OpenMPI: 
#!CMD="mpirun -npernode $mpi_tasks_per_node -np $np $application $options" 


############################################################### 
### You should not have to change anything below this line #### 
############################################################### 

cd $workdir 
echo -e "Changed directory to `pwd`.\n" 

JOBID=$SLURM_JOB_ID 

echo -e "JobID: $JOBID\n======" 
echo "Time: `date`" 
echo "Running on master node: `hostname`" 
echo "Current directory: `pwd`" 

if [ "$SLURM_JOB_NODELIST" ]; then 
     #! Create a machine file: 
     export NODEFILE=`generate_pbs_nodefile` 
     cat $NODEFILE | uniq > machine.file.$JOBID 
     echo -e "\nNodes allocated:\n================" 
     echo `cat machine.file.$JOBID | sed -e 's/\..*$//g'` 
fi 

echo -e "\nnumtasks=$numtasks, numnodes=$numnodes, mpi_tasks_per_node=$mpi_tasks_per_node (OMP_NUM_THREADS=$OMP_NUM_THREADS)" 

echo -e "\nExecuting command:\n==================\n$CMD\n" 

eval $CMD 

回答

0

如果你的工作在本質上是重新啓動,所有你需要做的是在你提交腳本的末尾調用sbatch。假設它被稱爲submit.sh

if ! job_is_done; 
then 
sbatch submit.sh 
fi 

job_is_done部分應該由當任務完成,返回0的命令來替換日誌文件(即計算完成,過程融合等),例如通過「grepping」爲某些線索。

您還可以重新排隊的作業:

job_is_done || scontrol requeue $SLURM_JOB_ID 

如果你的程序是不是本質上重新啓動,你可以使用一個包裝類如DMCTP使它重新啓動。

+0

非常感謝。當我的工作完成時,.out文件將被創建。換句話說,.out文件的數量將增加1.當.out的數量增加時是否可以重新執行作業?我非常喜歡小白,不知道有什麼問題。你能幫我嗎? – zlin

相關問題