1
一些導入和定義第一。功能推理
open import Level hiding (suc)
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Algebra
open import Data.Nat.Properties
open CommutativeSemiring commutativeSemiring hiding (_+_; _*_; sym)
data Even : ℕ -> Set where
ezero : Even 0
esuc : {n : ℕ} -> Even n -> Even (suc (suc n))
_^2 : ℕ -> ℕ
n ^2 = n * n
unEsuc : {n : ℕ} -> Even (suc (suc n)) -> Even n
unEsuc (esuc e) = e
remove-*2 : (n : ℕ) -> {m : ℕ} -> Even (n + n + m) -> Even m
remove-*2 0 e = e
remove-*2 (suc n) {m} e
with subst (λ n' -> Even (suc (n' + m))) (+-comm n (suc n)) e
... | esuc e1 = remove-*2 n e1
現在我想以一種很好的方式證明{n : ℕ} -> Even (n ^2) -> Even n
,類似於≡-Reasoning。我已經完成了
infix 4 ∈_
data ∈Wrap {α : Level} {A : Set α} : A -> Set α where
∈_ : (x : A) -> ∈Wrap x
infix 3 #⟨_⟩_
infixl 2 _$⟨_⟩'_ _$⟨_⟩_
#⟨_⟩_ : {α : Level} {A : Set α} -> A -> ∈Wrap A -> A
#⟨ x ⟩ _ = x
_$⟨_⟩'_ : {α β : Level} {A : Set α} {B : A -> Set β}
-> (x : A) -> (f : (x : A) -> B x) -> ∈Wrap (B x) -> B x
x $⟨ f ⟩' _ = f x
_$⟨_⟩_ : {α β : Level} {A : Set α} {B : Set β}
-> A -> (A -> B) -> ∈Wrap B -> B
_$⟨_⟩_ = _$⟨_⟩'_
even-sqrt : {n : ℕ} -> Even (n ^2) -> Even n
even-sqrt {0} ezero = ezero
even-sqrt {1} ()
even-sqrt {suc (suc n)} (esuc e) =
#⟨ e ⟩ ∈
Even (n + suc (suc (n + n * suc (suc n))))
$⟨ subst Even (+-comm n (suc (suc (n + n * suc (suc n))))) ⟩ ∈
Even (suc (suc (n + n * suc (suc n) + n)))
$⟨ unEsuc ⟩ ∈
Even (n + n * suc (suc n) + n)
$⟨ subst (λ n' -> Even (n' + n)) (+-comm n (n * suc (suc n))) ⟩ ∈
Even (n * suc (suc n) + n + n)
$⟨ subst (λ n' -> Even (n' + n + n)) (*-comm n (suc (suc n))) ⟩ ∈
Even (n + (n + n * n) + n + n)
$⟨ subst (λ n' -> Even (n' + n + n)) (sym (+-assoc n n (n * n))) ⟩ ∈
Even (n + n + n * n + n + n)
$⟨ subst Even (+-assoc (n + n + n * n) n n) ⟩ ∈
Even (n + n + n * n + (n + n))
$⟨ subst Even (+-assoc (n + n) (n * n) (n + n)) ⟩ ∈
Even (n + n + (n * n + (n + n)))
$⟨ remove-*2 n ⟩ ∈
Even (n * n + (n + n))
$⟨ subst Even (+-comm (n * n) (n + n)) ⟩ ∈
Even (n + n + n * n)
$⟨ remove-*2 n ⟩ ∈
Even (n * n)
$⟨ even-sqrt ⟩ ∈
Even n
$⟨ esuc ⟩ ∈
Even (suc (suc n))
是否有任何標準推理用於這種目的?
我沒有github帳戶。如果沒有人在三天內解決問題,我會打開它。 爲什麼不是 ____::{αβ} {A:集合α}→(a:A)→{B:A→集合β}→((x:A)→B x)→B a a⟦f⟧= fa – user3237465
由於支撐,您無法合併這些功能。讓我給一個小例子添加明確的大括號:'x⟦(t1 - f1⟶(t2⟧))''。這是因爲使用了「infixr」而不是「infixl」,這使得使用孔更容易。 'PreorderReasoning'具有相同的'infixr'。 –
https://github.com/agda/agda-stdlib/issues/15 –