2013-08-30 51 views
5

我有一個數組3×N的三維座標,我想有效地計算所有條目的距離矩陣。 有沒有有效的循環策略,而不是可以應用的嵌套循環?Numpy高效的一對所有

當前僞代碼實現:

for i,coord in enumerate(coords): 
    for j,coords2 in enumerate(coords): 
     if i != j: 
      dist[i,j] = numpy.norm(coord - coord2) 
+3

使用[''scipy.spatial.distance.pdist'](http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance。 pdist)。 – BrenBarn

回答

5

要重現您的結果正是:

>>> import scipy.spatial as sp 
>>> import numpy as np 
>>> a=np.random.rand(5,3) #Note this is the transpose of your array. 
>>> a 
array([[ 0.83921304, 0.72659404, 0.50434178], #0 
     [ 0.99883826, 0.91739731, 0.9435401 ], #1 
     [ 0.94327962, 0.57665875, 0.85853404], #2 
     [ 0.30053567, 0.44458829, 0.35677649], #3 
     [ 0.01345765, 0.49247883, 0.11496977]]) #4 
>>> sp.distance.cdist(a,a) 
array([[ 0.  , 0.50475862, 0.39845025, 0.62568048, 0.94249268], 
     [ 0.50475862, 0.  , 0.35554966, 1.02735895, 1.35575051], 
     [ 0.39845025, 0.35554966, 0.  , 0.82602847, 1.1935422 ], 
     [ 0.62568048, 1.02735895, 0.82602847, 0.  , 0.3783884 ], 
     [ 0.94249268, 1.35575051, 1.1935422 , 0.3783884 , 0.  ]]) 

爲了更有效地做到這一點,而無需複製計算,只計算唯一對:

>>> sp.distance.pdist(a) 
array([ 0.50475862, 0.39845025, 0.62568048, 0.94249268, 0.35554966, 
     1.02735895, 1.35575051, 0.82602847, 1.1935422 , 0.3783884 ]) 
#pairs: [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), 
#   (2, 4), (3, 4)] 

注兩個數組之間的關係。該cdist陣列可以被複制:

>>> out=np.zeros((a.shape[0],a.shape[0])) 
>>> dists=sp.distance.pdist(a) 
>>> out[np.triu_indices(a.shape[0],1)]=dists 
>>> out+=out.T 

>>> out 
array([[ 0.  , 0.50475862, 0.39845025, 0.62568048, 0.94249268], 
     [ 0.50475862, 0.  , 0.35554966, 1.02735895, 1.35575051], 
     [ 0.39845025, 0.35554966, 0.  , 0.82602847, 1.1935422 ], 
     [ 0.62568048, 1.02735895, 0.82602847, 0.  , 0.3783884 ], 
     [ 0.94249268, 1.35575051, 1.1935422 , 0.3783884 , 0.  ]]) 

一些多少有些令人吃驚timings-

的設置:

def pdist_toarray(a): 
    out=np.zeros((a.shape[0],a.shape[0])) 
    dists=sp.distance.pdist(a) 

    out[np.triu_indices(a.shape[0],1)]=dists 
    return out+out.T 

def looping(a): 
    out=np.zeros((a.shape[0],a.shape[0])) 
    for i in xrange(a.shape[0]): 
     for j in xrange(a.shape[0]): 
      out[i,j]=np.linalg.norm(a[i]-a[j]) 
    return out 

時序:

arr=np.random.rand(1000,3) 

%timeit sp.distance.pdist(arr) 
100 loops, best of 3: 4.26 ms per loop 

%timeit sp.distance.cdist(arr,arr) 
100 loops, best of 3: 9.31 ms per loop 

%timeit pdist_toarray(arr) 
10 loops, best of 3: 66.2 ms per loop 

%timeit looping(arr) 
1 loops, best of 3: 16.7 s per loop 

所以,如果你想廣場a回到你應該使用cdist,如果你只是想使用pdist。對於具有1000個元素的陣列,循環速度約慢4000倍,對於具有10個元素的陣列,循環速度慢至約70x,與cdist相比。

+0

Scipy提供['squareform'](https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.squareform.html)函數來轉換向量和矩陣距離陣列的版本(「縮寫」和「冗餘」形式) – Praveen