import numpy as np
alpha = 0.0251 # as close to true alpha as possible
def nonlinear(x, deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.e**(-x))
#seed
np.random.seed(1)
#testing sample
test_x = np.array([[251,497,-246],
[299,249,50],
[194,180,14],
[140,148,-8],
[210,140,70]])
#Input Array - This input will be taken directly from a Pong game
X = np.array([[198,200,-2],
[90, 280,-190],
[84, 256,-172],
[140,240,-100],
[114,216,-102],
[72, 95,-23],
[99, 31, 68],
[144, 20, 124],
[640, 216,424],
[32, 464,-432],
[176, 64,112],
[754, 506,248],
[107, 104,3],
[116,101,15]])
#output array - if ball_pos - paddle > 0 move up else move down
Y = np.array([[0,0,0,0,0,0,1,1,1,0,1,1,1,1,]]).T
syn0 = 2*np.random.random((3,14))-1
syn1 = 2*np.random.random((14,14))-1
for j in range(60000):
#forward propagation
l0 = X
l1 = nonlinear(np.dot(l0, syn0))
l2 = nonlinear(np.dot(l1, syn1))
#how much did we miss
l2_error = Y - l2
#multiply how much missed by the slope of sigmoid at the value in l1
l2_delta = l2_error * nonlinear(l2, True)
#how much did l1 contribute to l2 error
#(according to the weights)
l1_error = l2_delta.dot(syn1.T)
#in what direction is the target l1?
# Sure?
l1_delta = l1_error*nonlinear(l1,True)
#update weight
syn1 += alpha * (l1.T.dot(l2_delta))
syn0 += alpha * (l0.T.dot(l1_delta))
# display error
if(j % 10000) == 0:
print("ERROR: " + str(np.mean(np.abs(l2_error))))
#Testing Forward propagation
l0_test = test_x
l1_test = nonlinear(np.dot(l0_test,syn0))
l2_test = nonlinear(np.dot(l1_test,syn1))
#Dress up the array (make it look nice)
l2_test_output = []
for x in range(len(l2_test)):
l2_test_output.append(l2_test[x][0])
print("Test Output")
print(l2_test_output)
#Put all the l2 data in a way I could see it: Just the first probabilites
l2_output = []
for x in range(len(l2)):
l2_output.append(l2[x][0])
print("Output")
print(l2_output)
該代碼應該包含一組三個數字[(value_1),(value_2),(value_1-value_2)]並返回一個「0」如果第一個值和第二個值之間的差值爲負值,或者如果差值爲正值,則爲「1」。到目前爲止,它實際上工作得很好。如何實現代替乙狀函數的ReLU
這裏是輸出: ERROR: 0.497132186092 ERROR: 0.105081486632 ERROR: 0.102115299177 ERROR: 0.100813655802 ERROR: 0.100042420179 ERROR: 0.0995185781466 Test Output [0.0074706006801269686, 0.66687458928464094, 0.66687458928463983, 0.66686236694464551, 0.98341439176739631] Output [0.66687459245609326, 0.00083944690766060215, 0.00083946471285455484, 0.0074706634783305243, 0.0074706634765733968, 0.007480987498372226, 0.99646513183073093, 0.99647100131874755, 0.99646513180692531, 0.00083944572383107523, 0.99646513180692531, 0.98324165810211861, 0.66687439729829612, 0.66687459321626519]
ERROR:0.497132186092
正如你可以看到給定的α誤差= 0.0251(對於梯度下降 - 發現這個通過試驗和錯誤)僅爲約9.95%。
因爲我做了這個節目,我瞭解到,泄漏RELU是S型函數一個更好的選擇,因爲它優化和學習比乙狀結腸更快。我想在這個程序中使用numpy實現泄漏的RelU函數,但我不確定從哪裏開始,更特別是它的衍生物。
我如何能實現泄漏RELU到這個神經網絡?
它優化和學習不是隻在特定條件下乙狀結腸快(它缺乏一些乙狀結腸缺點,但有它自己的,例如所謂的「死RELU」的問題等等等等,這一切都複雜得多),如果你還需要你的網要返回0和1之間的值,您將需要S形或無論如何它是接近的替代,因爲relu是無界的。如果你想自己設計神經網絡,我開始的地方在這裏:https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b – Bob
謝謝你的信息。我希望我的網絡返回0到1之間的值,因爲我需要它返回經典概率。我有一個關於ReLU函數的問題,爲什麼有人需要一個不輸出0和1之間的值的函數,這是否意味着sigmoid函數和ReLU函數是不可互換的?另外我可能會不小心標記了你的評論。 –