我已經重新訓練了我的模型與tensorflow爲詩人啓動模型。預測需要0.4秒,分類需要2秒。由於需要很長時間,因此該框架具有滯後性,並且在預測時被擾亂。儘管預測需要時間,但我是否能通過任何手段使框架平滑? 以下是我的代碼...Opencv流是太遲緩
camera = cv2.VideoCapture(0)
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile('retrained_labels.txt')]
def grabVideoFeed():
grabbed, frame = camera.read()
return frame if grabbed else None
def initialSetup():
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
start_time = timeit.default_timer()
# This takes 2-5 seconds to run
# Unpersists graph from file
with tf.gfile.FastGFile('retrained_graph.pb', 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
print 'Took {} seconds to unpersist the graph'.format(timeit.default_timer() - start_time)
initialSetup()
with tf.Session() as sess:
start_time = timeit.default_timer()
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
print 'Took {} seconds to feed data to graph'.format(timeit.default_timer() - start_time)
while True:
frame = grabVideoFeed()
if frame is None:
raise SystemError('Issue grabbing the frame')
frame = cv2.resize(frame, (299, 299), interpolation=cv2.INTER_CUBIC)
cv2.imshow('Main', frame)
# adhere to TS graph input structure
numpy_frame = np.asarray(frame)
numpy_frame = cv2.normalize(numpy_frame.astype('float'), None, -0.5, .5, cv2.NORM_MINMAX)
numpy_final = np.expand_dims(numpy_frame, axis=0)
start_time = timeit.default_timer()
# This takes 2-5 seconds as well
predictions = sess.run(softmax_tensor, {'Mul:0': numpy_final})
print 'Took {} seconds to perform prediction'.format(timeit.default_timer() - start_time)
start_time = timeit.default_timer()
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
print 'Took {} seconds to sort the predictions'.format(timeit.default_timer() - start_time)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
print '********* Session Ended *********'
if cv2.waitKey(1) & 0xFF == ord('q'):
sess.close()
break
camera.release()
cv2.destroyAllWindows()
謝謝...讓我試試這個... –
即時通訊錯誤' input_q = Queue(maxsize = args.queue_size) NameError:名稱'args'未定義 ' –
將args.value更改爲harcode值,如30或40 –